This question paper contains 6 printed pages]

V-63-2017

FACULTY OF ARTS/SCIENCE

B.A./B.Sc. (Second Year) (Fourth Semester) EXAMINATION OCTOBER/NOVEMBER, 2017

(Revised Course)

MATHEMATICS

Paper II

(Real Analysis)

(MCQ + Theory)

(Friday, 10-11-2017)

Time: 2.00 p.m. to 4.00 p.m.

Time—2 Hours

Maximum Marks—40

N.B. := (i) All questions are compulsory.

- (ii) First 30 minutes are for Q. No. 1 (MCQ) and remaining time for other questions.
- (iii) Figures to the right indicate full marks.
- (iv) Use black ball pen to darken circle of correct choice in OMR answer sheet.
- (v) Negative marking system is applicable for MCQ.

MCQ

- 1. Choose the *correct* alternative for each of the following: 1 each
 - (1) A necessary and sufficient condition for the integrability of a bounded function f is that to every $\epsilon > 0$, there corresponds $\delta > 0$ such that for every partition p of [a, b] with norm $\mu(p) < \delta$ such that :
 - (A) $U(p, f) L(p, f) \le \epsilon$
 - (B) $U(p, f) L(p, f) < \epsilon$
 - (C) $U(p, f) L(p, f) > \in$
 - (D) $U(p, f) L(p, f) \ge \epsilon$

P.T.O.

- If f is bounded and integrable on [a, b], then |f| is : (2)
 - (A) Bounded on [a, b]
 - Integrable on [a, b](B)
 - Both (A) and (B) (C)
 - (D) Only (A)
- The Riemann sum of f over [a, b] relative to partition p is given (3)by:
 - (A) $s(p,f) = \sum_{i=1}^{n} m_i \Delta x_i$ (B) $s(p,f) = \sum_{i=1}^{n} m_i \Delta x_i$

 - (C) $s(p,f) = \sum_{i=1}^{n} f(t_i) \Delta x_i$ (D) $s(p,f) = \sum_{i=1}^{n} m_i m_i \Delta x_i$
- $\int_{1}^{x} |x| dx \text{ is equal to :}$ (4)
 - (A) ± 1

(B) -1

 (\mathbf{C}) 0

- (D) 1
- The value of $\int_0^3 [x] dx$ is equal to :
 - 3 (A)

(B) -3

0 (C)

- (D) ∞
- (6)The improper integral

$$\int_{a}^{b} \frac{dx}{(x-a)^{n}}$$

converges if and only if:

n > 1(A)

(B) n < 1

n = 0(C)

(D) n = 1

- (7) The improper integral $\int_{a}^{b} f \, dx$ converges at a if and only if to every $\epsilon > 0$ there corresponds $\delta > 0$ such that :
 - (A) $\left| \int_{a+\lambda_1}^{a+\lambda_2} f \ dx \right| < \epsilon, \ 0 < \lambda_1, \ \lambda_2 < \delta$
 - (B) $\int_{a+\lambda_1}^{a+\lambda_2} f \ dx < \epsilon, \ 0 < \lambda_1, \lambda_2 < \delta$
 - (C) $\int_{a+\lambda_1}^{a+\lambda_2} f \ dx \le \in, \ 0 < \lambda_1, \lambda_2 < \delta$
 - (D) $\left| \int_{a+\lambda_1}^{a+\lambda_2} f \ dx \right| \le \epsilon, \ 0 < \lambda_1, \ \lambda_2 < \delta$
- (8) For a periodic function of period 2π , then $\int_{-\pi}^{\pi} f(x) dx$ is equal to :
 - (A) $\int_{-\pi}^{\pi} f(r+x) dx$, r being any number
 - (B) $\int_{-\pi}^{\pi} f(r-x) dx$, r being any number
 - (C) $\int_{-\pi}^{\pi} f(r)$, r being any number
 - (D) None of the above
- (9) The Fourier series of the periodic function f with period 2π , defined as:

$$f(x) = \begin{cases} 0, & \text{for } -\pi < x \le 0 \\ x, & \text{for } 0 \le x \le \pi \end{cases}$$

the sum of series at x = 0 is :

(A) π

(B) π^2

(C) $\pi^2/8$

(D) $\pi^2/4$

P.T.O.

- (10) If a function f is bounded integrable and piecewise monotonic in $[0, \pi]$, then the sum of the sine series $\sum b_n \sin nx$, where b_n is equal to:
 - $(A) \int_{0}^{\pi} \sin nx \ dx$
- (B) $-\int_{0}^{\pi} \sin nx \ dx$
- $(\mathbf{C}) \qquad \frac{1}{\pi} \int_{0}^{\pi} \sin nx \ dx$
- (D) $\frac{2}{\pi} \int_{0}^{\pi} f \sin nx \ dx$

Theory

2. Attempt any two of the following:

5 each

- (a) If f is a bounded function on [a,b], then to every $\epsilon>0$, there corresponds $\delta>0$ such that :
 - (i) $U(p,f) < \int_{a}^{-b} f \ dx + \epsilon$
 - (ii) $L(p,f) > \int_{a}^{-b} f dx \epsilon$

for every partition p of [a, b] with norm $\mu(p) < \delta$.

(b) If a function f is bounded and integrable on each of the intervals [a, c], [c, b], [a, b], where c is a point of [a, b] then prove that :

$$\int_{a}^{b} f dx = \int_{a}^{c} f dx + \int_{c}^{b} f dx.$$

(c) Show that the function f defined as $f(x) = \frac{1}{2^n}$ when:

$$\frac{1}{2^{n+1}} < x \le \frac{1}{2^n}, \quad (n = 0, 1, 2 \dots)$$

is integrable on [0, 1].

3. Attempt any two of the following:

5 each

(a) If f and g are integrable on [a, b] and g keeps the same sign over [a, b] then there exists a number μ lying between the bouds of f such that:

$$\int_{a}^{b} fg \, dx = \mu \int_{a}^{b} g \, dx$$

(b) If f and g are two positive functions in [a, b] such that :

$$\lim_{x \to a+o} \frac{f(x)}{g(x)} = l,$$

where l is a non-zero finite number, then the two integrals $\int_a^b f dx$ and

 $\int_{a}^{b} g dx$ converge and diverge together a + a.

(c) Test the convergence of:

$$\int_0^1 \frac{dx}{\sqrt{1-x^3}}.$$

4. Attempt any two of the following:

5 each

(a) If f is bounded and integrable on $[-\pi, \pi]$ and if a_n , b_n are its Fourier coefficients, then :

$$\sum_{n=1}^{\infty} \left(a_n^2 + b_n^2\right),\,$$

converges.

P.T.O.

(b) If a function ϕ is bounded and integrable on the interval [a, b] then as $n \to \infty$

$$A_n = \int_a^b \phi \cos nx \, dx \to 0 \quad \text{and} \quad$$

$$B_n = \int_a^b \phi \sin nx \, dx \to 0.$$

(c) Find the Fourier series consisting of sine terms only, which represents the periodic function:

$$f(x) = x$$
 in $0 \le x \le \pi$.