This question paper contains 4 printed pages]

V-75-2017

FACULTY OF ARTS/SCIENCE

B.Sc. (Second Year) (Fourth Semester) EXAMINATION NOVEMBER/DECEMBER, 2017

(Revised Course)

MATHEMATICS

Paper—X

(Ring Theory)

(MCQ+Theory)

(Monday, 13-11-2017)

Time: 2.00 p.m. to 4.00 p.m.

Time— Two Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) First 30 minutes are for Q. No. 1 (MCQ) and remaining time for other questions.
 - (iii) Use black ball pen to darken circle of correct choice in OMR answer sheet.
 - (iv) Figures to the right indicate full marks.
 - (v) Negative marking scheme is applicable for MCQ.

(MCQ)

1. Choose the *correct* alternative for each of the following:

1 each

- (i) R is the set of even integers under the usual operations of addition and multiplication, then R is:
 - (a) a non-commutative ring
 - (b) a commutative ring without unit element
 - (c) a commutative ring with unit element
 - (d) not a ring

P.T.O.

- (ii) A ring is said to be a division ring, if its:
 - (a) non-zero elements form a group under multiplication
 - (b) non-zero elements form a group under addition
 - (c) non-zero elements doesn't form a group under multiplication
 - (d) None of the above
- (iii) If n objects are distributed over m places and if n > m, then:
 - (a) All places receives exactly one object
 - (b) All places receives atmost one object
 - (c) Some places receives at least two objects
 - (d) Some places receives no object
- (iv) If U, V are ideals of R, and U + V = $\{u + v \mid u \in U, v \in V\}$, then:
 - (a) U + V is not a subgroup of R under addition
 - (b) U + V is not an ideal
 - (c) For any $r \in \mathbb{R}$, $(u + v)r \notin \mathbb{U} + \mathbb{V}$
 - (d) U + V is an ideal
- (v) An ideal $M \neq R$ in a ring R is said to be a maximall ideal of R if whenever U is an ideal of R such that $M \subseteq U \subseteq R$, then :
 - (a) $R \neq U$ and $M \neq U$
- (b) either R = U or M = U
- (c) R = U but $M \neq U$
- (d) None of the above
- (vi) A ring R' is called an over-ring of R, if:
 - (a) R can not be imbedded in R'
 - (b) R' can be imbedded in R
 - (c) R can be imbedded in R'
 - (*d*) None of the above

- (vii) If $a, b \in \mathbb{R}$, then $d \in \mathbb{R}$ is said to be a greatest common divisor of a and b, if:
 - (a) d/a and d/b
 - (b) whenever c/a and c/b then c/d
 - (c) both (a) and (b) must be true
 - (d) (a) is true but (b) is not true
- (viii) If π is a prime element in the Euclidean ring R and π/ab where $a, b \in R$ then:
 - (a) π divides at lesat one of a or b
 - (b) π neither divides a nor b
 - (c) π must divide both a and b
 - (d) a, b both divides π
- (ix) Which of the following polynomial is primitive polynomial?
 - (a) $2x^2 + 4x + 6$

- (b) $3x^3 + 9$
- $(c) \qquad x^3 + 2x^2 + 3x + 5$
- $(d) \quad 5x^2 + 10x + 5$
- (x) Which of the following polynomial is irreducible over the field of real numbers?
 - (a) $x^2 4$

(b) $x^2 + 5x + 6$

(c) $x^2 - 25$

- (d) $x^2 + 1$
- 2. Attempt any *two* of the following:

5 each

- (a) Define Integral domain and prove that a finite integral domain is a field.
- (b) Prove that the homomorphism ϕ of R into R' is an isomorphism if and only if $I(\phi) = 0$.
- Let R be a ring, R' = R and define $\phi(x) = x$ for every $x \in \mathbb{R}$, then show that ϕ is a homomorphism and hence find kernel of ϕ .

		J ()~7	$\wedge \vee \wedge \vee$	X .				
WT	(4)	000		QX,	V_{-}	- 75 -	-201	L7

3. Attempt any *two* of the following:

5 each

- (a) If R is a commutative ring with unit element and M is an ideal of R, then prove that M is a maximal ideal of R if and only if R/M is a field.
- (b) Let R be a Euclidean ring and $a, b \in \mathbb{R}$. If $b \neq 0$ is not a unit in R, then prove that d(a) < d(ab).
- (c) If U is an ideal of R and $I \in U$, then prove that U = R.
- 4. Attempt any *two* of the following:

5 each

- (a) If f(x) and g(x) are primitive polynomials then prove that f(x)g(x) is also a primitive polynomial.
- (b) If p is a prime number of the form 4n + 1, then $p = a^2 + b^2$ for some integers a, b.
- (c) Show that $x^2 + x + 1$ is irreducible over F, then field of integers mod 2.