This question paper contains 3 printed pages]

AO-86-2018

FACULTY OF SCIENCE

B.Sc. (Second Year) (Fourth Semester) EXAMINATION MARCH/APRIL, 2018

(CBCS/CGPA)

MATHEMATICS

Paper XI

(Partial Differential Equations)

(MCQ & Theory)

		(MC	q w inediy)		
(Saturday, 31-03-2018)				Time: 2.00 p.m. to 4.00 p.m.	
Time—2 Hours				Maximum Marks—40	
N.B. :—	(<i>i</i>)	All questions are co	mpulsory.		
	(ii)	Use only black poin	t pen for first	question.	
(iii) (iv)		Darken only one circle for most correct answer of each MCQ.			
		Negative marking s	ystem is applic	able for first question.	
	7		MCQ	- L' M' P. M. B. ' V. C.	
1. Cho	ose n	nost correct answer o	f the following	10	
(<i>i</i>)	T	ne partial differential	coefficient	is denoted by S.	
	(a)	$\frac{\partial^2 z}{\partial x \partial y}$	(b)	$\frac{\partial^2 Z}{\partial x^2}$	
	(c)	$rac{\partial^2 z}{\partial y^2}$	(d)	$\frac{\partial Z}{\partial X}$	
(<i>ii</i>)	Pε	rtial differential equat	ion is formed by	eliminating arbitrary	
	(a)	Variables	(<i>b</i>)	Constants	
A PART OF STATES	(c)	Functions	(<i>d</i>)	Both (b) and (c)	
(iii)	$\mathbf{F}_{\mathbf{c}}$	or finding the solution	of partial differ	ential equation we first write	
	its	equat	tion.		
	(a)	Simple	(<i>b</i>)	Auxiliary	
	(c)	Lagrange's	(<i>d</i>)	None of these	
979000	TAN B			P.T.O.	

- In the method of multipliers l, m, n are chosen in such a way (iv)that:
 - lx + my + nz < 0(a)
- $(b) \quad lx + mv + nz = 0$
- (c) lx + mv + nz > 0
- (d) None of these
- (v)In Charpit's method z depends on x and y and dz is given by :
 - (a) $\frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy + c$
- $(b) \qquad \frac{\partial z}{\partial x} dx \frac{\partial z}{\partial y} dy$
- (c) $\frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$

- (d) None of these
- The axuiliary equation of $(D^3 4D^2D' + 3DD^{2'})z = 0$ is : (VI)
- $m^4 4m^3 + 3m^2 = 0$ (b) $m^2 4m + 3 = 0$
 - $m^3 4m^2 + 3m = 0$ (d) None of these
- The particular integral of the partial differential equation (vii)f(D, D')z = F(x, y) is given by:
 - (a) $\frac{F(x, y)}{f(D. D')}$

(b) $\frac{f(x,y)}{f(D,D')}$

(c) $\frac{F(x, y)}{f(x, y)}$

- (d) None of these
- Equations of the type $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ are called :
 - (a) Laplace equations
- (*b*) Wave equations
- (c)One-dimensional heat flow (d)
- None of these
- Laplace equation in polar co-ordinates is given by: (ix)
 - (a) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} < 0$ (b) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$
 - (c) $\frac{\partial^2 u}{\partial r^2} \frac{1}{r} \frac{\partial u}{\partial r} \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$
- (d) None of these

- (x) For two-dimensional heat flow equation in steady state temperature u(x, y):
 - (a) changes with time t
- (b) does not change with time t
- (c) changes with x
- (d) none of these

Theory

2. Attempt any two of the following:

5 each

- (a) Explain any *one* method of forming partial differential equation with suitable example.
- (b) Solve: $y^2p xyq = x(z 2y)$.
- (c) Find the general solution of $x(z^2 y^2) \frac{\partial z}{\partial x} + y(x^2 z^2) \frac{\partial z}{\partial y} = z(y^2 x^2)$.
- 3. Attempt any two of the following:

5 each

- (a) Find the solution of $3\frac{\partial^2 z}{\partial x^2} + 2\frac{\partial^2 z}{\partial x \partial y} + 4\frac{\partial^2 z}{\partial y^2} + 5\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} + z = 0$.
- (b) Solve: p(1 + q) = qz.
- (c) Solve: $\frac{\partial^3 z}{\partial x^3} 3 \frac{\partial^3 z}{\partial x^2 \partial y} + 4 \frac{\partial^3 z}{\partial y^3} = e^{x} + 2y$.
- 4. Attempt any two of the following:

5 each

(a) Explain the D'Almbert's method for solving the wave equation :

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$$

- (b) Find the solution of $\frac{\partial^2 u}{\partial x^2} = h^2 \frac{\partial u}{\partial t}$.
- (c) Use the method of separation of variables to solve the equation:

$$\frac{\partial^2 \mathbf{V}}{\partial \mathbf{x}^2} = \frac{\partial \mathbf{v}}{\partial t}$$