This question paper contains 4 printed pages]

W-71-2018

FACULTY OF ARTS/SCIENCE

B.A./B.Sc. (Second Year) (Fourth Semester) EXAMINATION OCTOBER/NOVEMBER, 2018

(CBCS/CGPA Pattern)

MATHEMATICS

Paper IX
(Real Analysis-II)
(MCQ+Theory)

(Tuesday, 16-10-2018)

Time: 2.00 p.m. to 4.00 p.m.

Time—2 Hours

Maximum Marks—40

N.B. := (i) All questions are compulsory.

- (ii) First 30 minutes are for Q. No. 1 (MCQ) and remaining time for other questions.
- (iii) Figures to the right indicate full marks.
- (iv) Use black ball pen to darken circle of correct choice in OMR answer-sheet.
- (v) Negative marking system is applicable for MCQ.

(MCQ)

- 1. Choose the *correct* alternative for each of the following: 1 each
 - (i) Which of the following is true?
 - (A) Every real valued bounded monotonic function is Riemann integrable
 - (B) Every bounded function is Riemann integrable
 - (C) Every Riemann integrable function is continuous
 - (D) Every Riemann integrable function is continuous except for finite number of points
 - (ii) Let a function $f: [0, 1] \to \mathbf{R}$ be defined by:

$$f(x) = \begin{cases} 1, & \text{when } x \text{ is rational} \\ 0, & \text{when } x \text{ is irrational} \end{cases}$$

Then:

- (A) f is Riemann integrable on [0, 1]
- (B) f is continuous on [0, 1]
- (C) f is not integrable on [0, 1]
- (D) f is monotonic function on [0, 1]

P.T.O.

- (iii) If P^* is a refinement of partition P of [a, b], then for a bounded function f on [a, b]:
 - (A) $L(P, f) \leq L(P^*, f)$
 - (B) $U(P^*, f) \le U(P, f)$
 - (C) $U(P^*, f) L(P^*, f) \le U(P, f) L(P, f)$
 - (D) All of the above
- $(iv) \qquad \int\limits_{-1}^{1} |x| \cdot dx =$
 - (A) -1

(B) (

(C) 1

- (D) $\frac{1}{2}$
- (v) Which of the following is not improper integral?
 - $(A) \int_{0}^{1} \frac{1}{x} dx$

(B) $\int_{1}^{2} \frac{1}{x} dx$

(C) $\int_{1}^{\infty} \frac{1}{x} \cdot dx$

- (D) $\int_{\infty}^{\infty} \frac{1}{x} dx$
- (vi) The primitive of x^2 is:
 - (A) $\frac{x^3}{3}$

(B) 2x

(C) 2x + 3

- (D) x^3
- (vii) Consider the following statements:
 - (i) The improper integral $\int_{a}^{b} f \cdot dx$ is convergent
 - (ii) The integral $\int_a^b |f| \cdot dx$ is convergent, then:
 - $(A) \quad (i) \Rightarrow (ii)$

(B) $(ii) \Rightarrow (i)$

(C) $(i) \Leftrightarrow (ii)$

(D) none of these

- A function $f(x) = e^x$ is : (viii)
 - (A) even

- (B) odd
- (C) both even and odd
- (D) neither even nor odd
- (ix)If f(x) is an even function which is bounded and integrable on $[-\pi, \pi]$, then $a_n =$

(A)
$$\frac{1}{\pi} \cdot \int_{0}^{\pi} f(x) \cdot \cos nx \cdot dx$$
 (B) $\frac{2}{\pi} \cdot \int_{0}^{\pi} f(x) \cdot \cos nx \cdot dx$

(B)
$$\frac{2}{\pi} \int_{0}^{\pi} f(x) \cdot \cos nx \cdot dx$$

(D)
$$\frac{2}{\pi} \int_{0}^{2\pi} f(x) \cdot \cos nx \cdot dx$$

- (X)Which of the following is *true*?
 - every power series is Fourier series (A)
 - (B) every trigonometric series is Fourier series
 - every Fourier series is trigonometric series (C)
 - none of the above (D)

(Theory)

2. Attempt any *two* of the following: 5 each

- Prove that the oscillation of a bounded function f on an interval (a) [a, b] is the supremum of the set $\{|f(x_1) - f(x_2)| : x_1, x_2 \in [a, b]\}$ of numbers.
- (*b*) If a function f is monotonic on [a, b], then prove that f is integrable on [a, b].
- Show that the constant function k is integrable and : (c)

$$\int_{a}^{b} k. \, dx = k(b-a).$$

3. Attempt any two of the following: 5 each

If a function f is bounded and integrable on [a, b] and there exists (a) a function F s.t. F' = f, then prove that :

$$\int_{a}^{b} f(x) \cdot dx = F(b) - F(a).$$

P.T.O.

- (b) Prove that the improper integral $\int_{a}^{b} \frac{1}{(x-a)^{n}} dx$ converges if and only if n < 1.
- (c) Test the convergence of:

$$\int_{0}^{1} \frac{dx}{\sqrt{1-x^3}}.$$

4. Attempt any *two* of the following:

5 each

(a) For a periodic function of period 2π , prove that :

(i)
$$\int_{\alpha}^{\beta} f \cdot dx = \int_{\alpha+2\pi}^{\beta+2\pi} f \cdot dx$$

$$(ii) \qquad \int_{-\pi}^{\pi} f \cdot dx = \int_{\alpha}^{\alpha+2\pi} f \cdot dx$$

where α , β being any numbers.

- (b) Explain the half range sine series.
- (c) Find the Fourier series of the periodic function f with period 2π , defined as follows:

$$f(x) = \begin{cases} 0, & -\pi \le \pi \le 0 \\ x, & 0 \le x \le \pi \end{cases}.$$