This question paper contains 4 printed pages]

B-82-2019

FACULTY OF ARTS AND SCIENCE

B.A./B.Sc. (Second Year) (Fourth Semester) EXAMINATION MARCH/APRIL, 2019

(CBCS/CGPA Pattern)

MATHEMATICS

Paper IX

(Real Analysis—II)

(MCQ & Theory)

(Wednesday, 27-3-2019)

Time: 2.00 p.m. to 4.00 p.m.

Time—2 Hours

Maximum Marks—40

- N.B. : (i)All questions are compulsory.
 - First 30 minutes are for Q. No. 1 (MCQ) and remaining time for (ii)other questions.
 - Figures to the right indicate full marks. (iii)
 - (iv)Use black ball pen to darken circle of correct choice in OMR answer-sheet.
 - Negative marking system is applicable for MCQ.

MCQ

- 1. Choose the *correct* alternative for each of the following: 1 each
 - The norm of a partition P is denoted as $\mu(P)$ = (i)
 - $|x_i x_{i-1}|$ (a)

- $x_i x_{i-1}$
- $\max_{1 \le i \le n} |x_i x_{i-1}| \qquad (d) \qquad 1$
- If P^* is a common refinement of partitions P_1 and P_2 , then :
 - $(a) \qquad P^* = P_1 \cap P_2$
- $(b) \qquad P^* = P_1 \cup P_2$

 $(c) \qquad \mathbf{P}^* = \mathbf{P_1}$

- $(d) \qquad P^* = P_2$
- If P^* is a refinement of P of [a, b], then for a bounded function f, (iii)
 - (a) $L(P^*, f) \ge L(P, f)$
- (b) $L(P, f) \ge L(P^*, f)$
- (c) Both (a) and (b)
- Neither (a) nor (b)(d)

P.T.O.

The Riemann sum of f over [a, b] relative to partition P is given (iv)by:

(a)
$$S(P, f) = \sum_{i=1}^{n} M_i \Delta x_i$$

(a)
$$S(P, f) = \sum_{i=1}^{n} M_i \Delta x_i$$
 (b) $S(P, f) = \sum_{i=1}^{n} m_i \Delta x_i$

(c)
$$S(P, f) = \sum_{i=1}^{n} f(t_i) \Delta x_i$$
 (d) None of these

- A derivable function F, if it exists such that its derivative F' = f is (v) called:
 - Norm of f(a)

- (b) Primitive of *f*
- (c) Upper integral of f
- (d) Lower integral of f
- (vi)Functions possessing primitives are:
 - Necessarily continuous (a)
- Not necessarily continuous (b)
- (c) Necessarily derivable
- (d)None of these
- (vii) Which of the following is an improper integral?

(a)
$$\int_{1}^{\infty} \frac{dx}{x^2}$$

$$(b) \qquad \int_{-\infty}^{\infty} \frac{dx}{1+x^2}$$

$$(c) \qquad \int_{-1}^{\infty} \frac{dx}{x^2}$$

- All of these
- (viii) A series of the form $\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ is called :
 - (a) Fourier series
- (*b*) Power series
- (c)Trigonometric series
- (*d*) Series
- If the function is on the interval $[-\pi, \pi]$, then also (ix)its Fourier coefficients approach zero as $n \to \infty$.
 - (a)Continuous

- (*b*) Piecewise continuous
- (c) Not continuous
- (*d*) Derivable

If f is an odd function $f(-x) = -f(x) \ \forall \ x$, then $f \cos nx$ is an odd (x)function is:

$$(a) a_n = \int_{-\pi}^{\pi} f \cos nx \, dx$$

(a)
$$a_n = \int_{-\pi}^{\pi} f \cos nx \, dx$$
 (b) $a_n = -\frac{1}{\pi} \int_{-\pi}^{\pi} f \cos nx \, dx$

$$(c) a_n = \int_{\pi}^{-\pi} f \cos nx \, dx$$

(c)
$$a_n = \int_{\pi}^{-\pi} f \cos nx \, dx$$
 (d) $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f \cos nx \, dx$

Theory

2. Attempt any two of the following:

5 each

If f is a bounded function on [a, b], then prove that to every $\epsilon > 0$, (a)there corresponds $\delta > 0$ such that :

$$U(P, f) < \int_{a}^{b} f dx + \epsilon.$$

- (*b*) Prove that every continuous function is integrable.
- (c) Show that:

$$\int_{1}^{2} f \, dx = \frac{11}{2},$$

where f(x) = 3x + 1.

3. Attempt any *two* of the following: 5 each

If a function f is bounded and integrable on [a, b], then the function (a)F defined as:

$$\mathbf{F}(x) = \int_{a}^{x} f(t)dt, \ a \leq x \leq b,$$

is continuous on [a, b] and furthermore, if f is continuous at a point c of [a, b], then prove that F is derivable at c and F'(c) = f(c).

P.T.O.

(b) If f and g be two positive functions in [a, b] such that :

$$\lim_{x \to a^{+}} \frac{f(x)}{g(x)} = l,$$

where, l is a non-zero finite number, then prove that the two integrals:

$$\int_{a}^{b} f dx \text{ and } \int_{a}^{b} g dx$$

converge and diverge together at a.

(c) Test the convergence of

$$\int_{0}^{\pi/2} \frac{\sin x}{x^p} dx.$$

4. Attempt any two of the following:

5 each

(a) For a periodic function of period 2π , prove that :

(i)
$$\int_{\alpha}^{\beta} f \, dx = \int_{\alpha+2\pi}^{\beta+2\pi} f \, dx$$

(ii)
$$\int_{-\pi}^{\pi} f(x)dx = \int_{-\pi}^{\pi} f(\gamma + x)dx$$

where α , β , γ being any numbers.

(b) If f is bounded and integrable on $[-\pi, \pi]$ and if a_n, b_n are its Fourier coefficients, then prove that :

$$\sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right)$$

converges.

(c) Find the Fourier series generated by the periodic function |x| of period 2π . Also compute the value of series at x = 0.

B-82-2019