This question paper contains 3 printed pages]

Y-100-2019

FACULTY OF ARTS AND SCIENCE

B.A./B.Sc. (Second Year) (Fourth Semester) (Backlog) EXAMINATION OCTOBER/NOVEMBER, 2019

MATHEMATICS

Paper (X)

(Ring Theory)

(MCQ+Theory)

(Tuesday, 19-11-2019)

Time: 2.00 p.m. to 4.00 p.m.

Time— Two Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) First 30 minutes are for Q. No. 1 (MCQ) and remaining time for other questions.
 - (iii) Use black ball pen to darken circle of correct choice in OMR answer sheet.
 - (iv) Figures to the right indicate full marks.
 - (v) Negative marking scheme is applicable for MCQ.

(MCQ)

- 1. Choose the correct alternative for each of the following: 1 each
 - (i) R is the set of integers, positive, negative and O; '+' is usual addition and ':' is usual multiplication of integers, then:
 - (a) R is a commutative ring
 - (b) R is a commutative ring with unit element
 - (c) R is a commutative ring but has no unit element
 - (d) R is not a ring
 - (ii) A ring is said to be a division ring if its:
 - (a) Nonzero elements form a group under addition
 - (b) Nonzero elements form a group under multiplication
 - (c) Zero elements form a group under addition
 - (d) Zero elements form a group under multiplication

P.T.O.

(iii)	If n objects are distributed over m places and if $n > m$, then :
	(a) All places receive exactly one object
	(b) All places receive atmost one object
	(c) Some places receive at least two objects
	(d) Some places receive no object
(iv)	Which of the following is/are true?
	(a) If $a \mid b$ and $b \mid c$ then $a \mid c$
	(b) If $a \mid b$ and $a \mid c$ then $a \mid (b \pm c)$
	(c) If $a \mid b$ and $a \mid bx$ for all $x \in \mathbb{R}$
	(d) All of the above
(<i>v</i>)	A ring R is said to be imbedded in a ring R', if there exists:
	(a) f is a homomorphism (b) f is a one-to-one
	(c) both (a) and (b) (d) None of these
(vi)	An ideal $M \neq R$ in a ring R is said to be maximal ideal of R if whenever U is an ideal of R such that $M \subset U \subset R$, thene:
	(a) $R \neq U$ and $M \neq U$ (b) Either $R = U$ or $M = U$
	(c) $R = U$ but $M \neq U$ (d) None of these
(vii)	Let R be a commutative ring with unit element. Two elements a and b in R are said to be associates if :
200	(a) $b = ua$ for any u in R (b) $b = ua$ for some unit u in R
320000	(c) $b \neq ua$ for u in R (d) $b \neq a$
(viii)	If $p(x) = 1 + x + x^2$ and $q(x) = 2 - x^2 + x^3$, then $p(x) \cdot q(x) =$
9766 9999	A VIO 101 VA
	(a) $2 + 2x + x^2 + x^5$ (b) $3 + x^2 - x^3 + x^5$ (c) $-7 + 2x + x^4$ (d) None of these
(ix)	The polynomial $f(x) = a_0 + a_1x + \dots + a_n x^n$, where a_0, a_1
	(a) The greatest common divisor of a_0 , a_1 , a_2 ,
	(b) The least common multiple of $a_0, a_1, a_2, \dots, a_n$ is greated than 1
	(c) The greatest common divisor of a_0 , a_1 , a_2 ,
Crinial.	1 46 AN AN AN AN

The least common multiple of a_0 , a_1 , a_n is 1

(*d*)

- (x) A polynomial is said to be integer monic if all its coefficients are:
 - (a) Integers and its highest coefficient is 1
 - (b) Natural and its highest coefficient is 1
 - (c) Integers and its highest coefficient is more than 1
 - (d) Integers and its highest coefficient is less than 1

(Theory)

2. Attempt any two of the following:

5 each

- (a) Prove that a finite integral domain is a field.
- (b) If R is a ring, then for all $a, b \in R$ prove that :
 - (*i*) a0 = 0a = 0
 - (ii) a(-b) = (-a)b = -(ab)
- (c) Let R be aring, R' = R and define $\phi(x) = x$ for every $x \in \mathbb{R}$, then show that ϕ is a homomorphism and hence find kernel of ϕ .
- 3. Attempt any *two* of the following:

5 each

- (a) Let R be a commutative ring with unit element whose only ideals are (0) and R itself. Then prove that R is field.
- (b) Prove that the ideal $A = (a_0)$ is a maximal ideal of the Euclidean ring R if and only if a_0 is a prime element of R.
- (c) Prove that if [a, b] = [a', b'] and [c, d] = [c', d'] then, [a, b] [c, d] = [a', b'] [c', d']
- 4. Attempt any two of the following:

5 each

- (a) If p is a prime number of the form 4n + 1, then prove that $p = a^2 + b^2$ for some integers a, b.
- (b) Prove that F[x] is a principal ideal ring.
- (c) Show that $x^2 + x + 1$ is irreducible over F, where F is the field of integer mod 2.