This question paper contains 5 printed pages]

AO—46—2018

FACULTY OF SCIENCE

B.Sc. (Second Year) (Fourth Semester) EXAMINATION MARCH/APRIL, 2018

(CBCS/CGPA Pattern)

CHEMISTRY

Paper IX

(Physical and Inorganic Chemistry)

(MCQ & Theory)

(Thursday, 22-3-2018)

Time: 2.00 p.m. to 4.00 p.m.

Time—2 Hours

Maximum Marks—40

- N.B. := (i) Attempt AII questions.
 - (ii) All questions carry equal marks.
 - (iii) Use of logarithmic table and calculator is allowed.
 - (iv) Use separate answer-sheet for MCQ Q. No. 1.
 - (v) Use black point pen to darken the circle of correct choice in OMR sheet.
 - (vi) Use only one answer-book for both Sections A and B.

MCQ

- 1. Select the *correct* answer for each of the following Multiple Choice Questions:
 - (i) Petrol on water in rainy days exhibit the phenomenon of:
 - (a) Fluorescence

- (b) Delayed fluorescence
- (c) Phosphorescence
- (*d*) Both (*a*) and (*b*)

P.T.O.

- (vii) The specific conductance of a solution is given by:
 - (a) $K = \frac{1}{R} \times \frac{A}{I}$

 $(b) K = \frac{1}{R} \times \frac{I}{A}$

(c) $K = R \times \frac{I}{A}$

- (d) $K = R \times \frac{A}{I}$
- ($v\!i\!i\!i$) The IF $_5$ has geometry.
 - (a) Square planar
- (b) Linear

(c) Octahedral

- (d) None of these
- (ix) The No. of lone pairs and bond pairs present in BrF_5 molecules are :
 - (a) 0 and 3

(b) 1 and 3

(c) 5 and 1

- (d) 1 and 5
- (x) CaC₂ is an example of:
 - (a) Covalent carbide
- (b) Ionic carbide
- (c) Metallic carbide
- (d) None of these

Theory

Section A

(Physical Chemistry)

2. Solve any two of the following:

 $2 \times 5 = 10$

- (i) Explain the half-life and graphical method for the determination of order of a reaction.
- (ii) Explain the Arrhenius theory of electrolytic dissociation. Give its limitations.

P.T.O.

- (iii) (a) Differentiate between photochemical and thermochemical reactions.
 - (b) A system absorbs 3×10^{16} quanta of light per second. On irradiation for 20 minutes, 3×10^{-3} moles of reactant was found to have reacted. Calculate the quantum yield of the reaction.
- (iv) Derive the equation for rate constant of first order reaction. Show that the time taken for the completion of same fraction of change is independent of initial concentration.
- 3. Answer any *two* of the following:

 $2 \times 5 = 10$

- (i) State and explain the Kohlrausch's law.
 - The transport number of H⁺ ion in HCl and $\rm CH_3COO^-$ ion in $\rm CH_3COONa$ are 0.81 and 0.47 respectively. The equivalent conductances at infinite dilution of HCl and $\rm CH_3COONa$ are 426 ohm⁻¹ cm² equt⁻¹ and 91 ohm⁻¹ cm² equt⁻¹. Calculate the equivalent conductance of acetic acid at infinite dilution.
- (ii) What is quantum yield? Give the experimental determination of quantum yield.
- (iii) The resistance of 0.5 N solution of an electrolyte in a cell was found to be 50 ohms. The electrodes of the cells are 2 cm apart having cross-sectional area of 4 cm². Find the equivalent conductivity of solution.
- (iv) (a) Derive the rate constant expression for a zero order reaction. 3
 - (b) Calculate the energy of a photon in Joules associated with wavelength of 3600 Å.

Section B

(Inorganic Chemistry)

4. Solve any *two* of the following:

 $2 \times 5 = 10$

- (a) What are Zeolites? Give their classification.
- (b) What are Interhalogen compounds? Give the preparation and structure of IF₇.
- (c) What are Pseudo-halogens? What is the action of cyanogen on:
 - (i) O_2
 - (ii) Alkali metal
 - (iii) KOH.
- (d) (i) Why are Interhalogens more reactive than halogens? Explain.
 - (ii) Write a note on Ultramarine.