This question paper contains 3 printed pages]
W-39—2018
FACULTY OF SCIENCE
B.Sc. (Third Year) (Fifth Semester) EXAMINATION OCTOBER/NOVEMBER, 2018
(CBCS Pattern)
CHEMISTRY
Paper XIII
(Physical and Inorganic Chemistry)
(Thursday, 11-10-2018)
Time : 10.00 a.m. to 12.00 noon
Time-2 Hours
Maximum Marks-40
N.B. :- (i) Use same answer-book for Section A and Section B.
(ii) Use of logarithmic table and non-functional calculator is allowed.
(iii) Attempt All questions.

Section A
(Physical Chemistry)

1. Answer any five of the following : $5 \times 2=10$
(a) Discuss the Liquid-Liquid chromatography.
(b) What are limitations of Nernst distribution law?
(c) Derive an expression for distribution law when solute undergo dissociation.
(d) What are factors affecting width of spectral lines ?
(e) Explain experimental method of Raman Spectroscopy.
(f) What is third order reaction ? Give its any two examples.
(g) Show that the time required for completion of any fraction of third order reaction is inversely proportional to the square of initial concentration of the reactant.
(h) Discuss the kinetics of decomposition of HI.
2. Answer any two of the following :
(a) Discuss kinetics of opposing reaction.
(b) State and explain Franck-Codon principle.
(c) The pure rotational spectrum of the gaseous diatomic molecule consist of series of equally spaced lines separated by $3.60 \mathrm{~cm}^{-1}$. Calculate the internuclear distance of the molecule. The reduced mass of molecule is $1.15 \times 10^{-26} \mathrm{~kg}$. $\left(h=6.626 \times 10^{-34} \mathrm{Js}, c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}, \pi=3.14\right.$, $1 \mathrm{~cm}^{-1}=10^{2} \mathrm{~m}^{-1}$)
3. Answer any one of the following : $1 \times 7=7$
(a) Derive an expression for the energy of the transition from $\mathrm{J} \rightarrow \mathrm{J}+1$ level in rotational spectra of rigid diatomic molecule.
(b) (i) Derive an expression for distribution law when solute undergo association.
(ii) The distribution of organic solute between water and carbon tetrachloride, the following results were obtained :
Concentration in Water $0.047 \quad 0.082$ Concentration in $\mathrm{CCl}_{4} \quad 0.127 \quad 0.390$
Determine molecular state of the solute in CCl_{4}.
Section B
(Inorganic Chemistry)
4. Solve any three of the following :
(a) How will you prepare organotin compounds from :
(i) Organoaluminium compound
(ii) Wurtz reaction
(iii) Grignard reagent.
(b) What is the action of the following on organolithium compounds ?
(i) Halogen
(ii) BCl_{3}
(iii) Carbon monoxide.
(c) Give any three applications of organotitanium compounds.
(d) Explain the structure of $\mathrm{Ni}(\mathrm{CO})_{4}$ according to old approach.
(e) Define metal carbonyls. Draw the structures of the two isomers of $\mathrm{Co}_{2}(\mathrm{CO})_{8}$.
5. Solve any two of the following :
(a) What are covalent organometallic compounds ? Give its suitable example.
(b) Give any two uses of organoaluminium compounds.
(c) Write any two properties of organotitanium compounds.
(d) Draw the structure of :
(i) $\quad \mathrm{Fe}_{2}(\mathrm{CO})_{9}$ and
(ii) $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$.
