This question paper contains 3 printed pages]
W-39A-2018
FACULTY OF SCIENCE
B.Sc. (Third Year) (Fifth Semester) EXAMINATION OCTOBER/NOVEMBER, 2018
(CBCS Pattern)
CHEMISTRY
Paper XIII
[Physical and Inorganic Chemistry $\left(\mathrm{B}_{2}\right)$ ]
(Thursday, 11-10-2018)
Time : 10.00 a.m. to 12.00 noon
Time-Two Hours
Maximum Marks-40
N.B. :- (i) Use same answer-book for Section A and Section B.
(ii) Use of Logarithmic table and non-functional calculator is allowed.
(iii) Attempt all questions.

## Section A <br> (Physical Chemistry)

1. Answer any five of the following :
$5 \times 2=10$
(a) What is polarogram? Draw a diagrammatic sketch of the polarographic cell assembly.
(b) Discuss the term vapour pressure of ideal solution.
(c) Find out the relation between activities and mole fraction of the component in an ideal solution.
(d) Show that volume change of mixing $\left[\Delta \mathrm{V}_{\text {mix }}\right]$ for an ideal solution is zero.
(e) Derive an equation for the dependence of vapour pressure on temperature for the solution.
(f) How osmotic pressure is used in determination of molecular weight ?
(g) Describe Ostwald and Walker's method to determine lowering of vapour pressure.
(h) Derive the relation between elevation in boiling point and molecular weight of solute.
2. Answer any two of the following :
(a) Derive an expression for chemical potential in ideal and non-ideal solution.
(b) Define cryoscopic constant.

An aqueous solution containing $0.25 \times 10^{-3} \mathrm{~kg}$ of solution dissolved in $20 \times 10^{-3} \mathrm{~kg}$ of water froze at 272.58 K . Calculate molar mass of the solute $\left(\mathrm{K}_{f}=1.85 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$.
(c) Discuss the application of polarography in estimation of inorganic and organic substance.
3. Answer any one of the following :
(a) Derive an expression for half wave potential.
(b) Derive Gibbs-Duhem-Margules equation. Hence give its application to ideal solution.

Section B
(Inorganic Chemistry)
4. Solve any three of the following :
(a) What are poly acids ? Explain different types of poly acids with suitable example.
(b) Give an account of heteropoly acids.
(c) Describe the structure of $\left[\mathrm{Mo}_{7} \mathrm{O}_{24}\right]^{-6}$.
(d) Explain isolobality fragments.
(e) Discuss the structure of $\mathrm{Os}(\mathrm{CO})_{4}$.
5. Solve any two of the following :
(a) How are heteropoly molybdates prepared?
(b) Draw the structure of $\mathrm{WO}_{6}$.
(c) Name the different types of isopoly tungstates.
(d) Draw the structure of $\left(\mathrm{CH}_{2}\right)_{4}$ and $\mathrm{P}_{4}$.

