This question paper contains 3 printed pages]
W-40—2018
FACULTY OF SCIENCE
B.Sc. (Fifth Semester) EXAMINATION

OCTOBER/NOVEMBER, 2018
CHEMISTRY
Paper XIII
(Physical and Inorganic Chemistry)
(Thursday, 11-10-2018)
Time : 10.00 a.m. to 12.00 noon
Time-Two Hours
Maximum Marks-40
N.B. :- (i) Use only one answer-book for both Sections A and B.
(ii) Use of calculator is allowed.
(iii) Attempt all questions.
(iv) Use of Logarithmic table is allowed.

Section A
(Physical \& Inorganic)

1. Answer any five of the following :
$5 \times 2=10$
(i) State and explain Nernst distribution law.
(ii) Explain chain reaction with suitable example.
(iii) Explain the term partition chromatography.
(iv) What are third order reaction ? Give two examples.
(V) What are the factors that affect the width of spectral lines ? Explain any one factor.
(vi) Explain $\sigma \rightarrow \sigma^{*}$ and $\pi \rightarrow \pi^{*}$ transitions.
(vii) Explain consecutive reactions.
2. Answer any one of the following :
$5 \times 2=10$
(a) Derive the equation for rate constant of third order reaction.
(b) Prove that frequency separation between successive lines in pure rotational Raman spectrum is $4 \mathrm{~B} \mathrm{~cm}{ }^{-1}$.
(c) The vibrational frequency of a diatomic is $2880 \mathrm{~cm}^{-1}$. Calculate force constant. The atomic masses are $56 \times 10^{-27} \mathrm{~kg}$ and $1.5 \times 10^{-27} \mathrm{~kg}$.

$$
\left(c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)
$$

3. Answer any one of the following :
$7 \times 1=7$
(i) Derive an expression for energy of transition from $J \rightarrow J+1$ level in rigid diatomic rotator. Show allowed transition with the help of energy level diagram.
(ii) (a) Derive an expression for Nernst distribution law when solute undergoes dissociation.
(b) In the distribution of an organic solute between water $\left(\mathrm{C}_{1}\right)$ and chloroform $\left(\mathrm{C}_{2}\right)$, the following results were obtained :

$$
\mathrm{C}_{1}\left(\text { mole. } \mathrm{dm}^{-3}\right) 0.190,0.368
$$

$$
\mathrm{C}_{2}\left(\mathrm{~mole}^{2} \mathrm{dm}^{-3}\right) 0.42,1.538
$$

Determine the molecular state of solute in chloroform.

Section B
 (Inorganic Chemistry)

4. Solve any three of the following :
(a) Give any three methods of preparation of $\mathrm{Ni}(\mathrm{CO})_{4}$.
(b) Explain the structure of $\mathrm{Ni}(\mathrm{CO})_{4}$.
(c) Write the application of organotitanium compounds.
(d) What is the action of :
(i) alkyl iodide
(ii) halogen and
(iii) carbon dioxide.
on organolithium compounds.
(e) Give the methods of preparation of organotin compounds.
5. Solve any two of the following : $2 \times 2=4$
(a) Draw the structure of $\mathrm{Al}_{2} \mathrm{Me}_{6}$. What is its IUPAC name ?
(b) Classify ionic and covalent organo-metallic compounds of the following :
Butyl sodium, Dimethyl cadmium, Phenyl sodium, Diphenyl zinc.
(c) Give any two applications of organotin compounds.
(d) Write the IUPAC name of $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ and $\mathrm{Co}_{2}(\mathrm{CO})_{8}$.
