This question paper contains 3 printed pages]

## B-45-2019

### FACULTY OF SCIENCE

# B.Sc. (Third Year) (Fifth Semester) EXAMINATION MARCH/APRIL 2019

(CGPA Pattern)

**CHEMISTRY** 

Paper XIII

(Physical and Inorganic Chemistry)

(Wednesday, 20-3-2019)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

N.B.: (i) Use same answer book for Section A and Section B.

- (ii) Use of logarithmic table and non-functional calculator is allowed.
- (iii) Attempt All questions.

#### Section A

## (Physical Chemistry)

1. Answer any five of the following:

 $5 \times 2 = 10$ 

- (a) Explain the kinetics of dimerization of anthracene.
- (b) Prove that in case of third order reaction half-life time is inversely proportional to square of initial concentration of reactant.
- (c) Discuss consecutive reactions.
- (d) What are factors affecting intensity of spectral line?
- (e) Explain the transition  $6 \longrightarrow 6^*$  with energy level diagram.
- (f) Discuss any two applications of Nernst distribution law.
- (g) State and explain Henry's Law.
- 2. Answer any *two* of the following:

 $2 \times 5 = 10$ 

(a) The fundamental vibrational frequency of diatomic molecule is 2650 cm<sup>-1</sup>. Calculate the force constant of this molecule. The atomic masses are  $57.00 \times 10^{-27}$  kg and  $1.5 \times 10^{-27}$  kg. ( $c = 3 \times 10^8$  m/s,  $\pi = 3.142$  and  $1 \text{ cm}^{-1} = 10^2 \text{ m}^{-1}$ )

P.T.O.

- (b) Derive kinetic expression for third order reaction.
- (c) Explain the quantum theory of Raman Scattering.
- 3. Answer any *one* of the following:

 $1 \times 7 = 7$ 

(a) Draw energy level diagram showing allowed transitions for diatomic molecule as SHO.

Derive an expression  $I = \mu r_0^2$  for rigid diatomic rotating molecule.

- (b) (i) What are the limitations of Nernst distribution law.
  - (ii) Experiments in the study of the distribution of an organic solute between water  $(c_1)$  and chloroform  $(c_2)$  gave the following results:

Concentration in aqueous solution  $(c_1)$ : 0.250 0.430

Concentration in chloroform solution  $(c_2)$ : 1.852 5.430

Determine molecular state of solute in chloroform.

#### Section B

## (Inorganic Chemistry)

4. Solve any *three* of the following:

 $3\times3=9$ 

- (a) Explain covalent and electron deficient organometallic compound with suitable examples.
- (b) Give any three methods of preparation of organolithium compound.
- (c) Write applications of organotitanium compounds.
- (d) How will you prepare Nickel tetracarbonyl from:
  - (i) NiS
  - (ii)  $Ni(CN)_2$
  - (iii) NiI<sub>2</sub>
- (e) Explain the structure of Nickel tetracarbonyl with old and new approach.

WT (3) B—45—2019

5. Solve any two of the following:

 $2 \times 2 = 4$ 

- (a) Give the characteristics of mononuclear carbonyl.
- (b) Explain the preparation of organoaluminum compound by :
  - (i) Grignard reagent
  - (ii) Organomurcuric compound.
- (c) Describe the structure of organolithium compound.
- (d) Write the IUPAC name of:



(ii) Fe(CO)<sub>5</sub>.