This question paper contains 2 printed pages]

## R-76-2017

## FACULTY OF SCIENCE

## B.Sc. (Third Year) (Fifth Semester) EXAMINATION MARCH/APRIL, 2017

## **MATHEMATICS**

Paper XV

[Mechanics—I (Statics)]

(Monday, 3-4-2017)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

N.B. := (i) All questions are compulsory.

- (ii) Figures to the right indicate full marks.
- 1. Attempt any five of the following:

2 each

- (a) Define an axiom for equilibrium of two forces.
- (b) Define the resultant of system of forces.
- (c) If the magnitudes of two forces  $\overset{\rightarrow}{P}$  and  $\overset{\rightarrow}{Q}$  are equal, then find the magnitude and direction of the resultant of the two forces  $\overset{\rightarrow}{P}$  and  $\overset{\rightarrow}{Q}$ .
- (d) State the triangle law of forces.
- (e) Define the moment of the force  $\overrightarrow{F}$  about O.
- (f) Write the conditions of equilibrium of forces acting on a rigid body in cartesian form.
- 2. Attempt any two of the following:

5 each

- (a) Find the resultant of two unlike parallel forces acting upon a rigid body.
- (b) State and prove the law of parallelogram of forces.

P.T.O.

- (c) A particle is acted upon by three forces in one plane, equal to 2,  $2\sqrt{2}$  and 1 kg respectively. The first force is horizontal, the second acts at  $45^{\circ}$  to the horizontal, and the third is vertical. Find the magnitude and direction of the resultant.
- 3. Attempt any two of the following:

5 each

- (a) State and prove Lami's theorem.
- (b) State and prove triangle law of forces.
- (c) A and B are two smooth pegs in a horizontal line at a distance 5 m apart. Two light enextensible strings CA and CB of lengths 3 m and 4 m respectively attached to pegs. Find the tensions in the strings, when a weight of 10 kg is suspended from C.
- 4. Attempt any two of the following:

5 each

- (a) Prove that the sum of the vector moments of two like parallel forces acting on a rigid body about any point is equal to the vector moment of their resultant about the same point.
- (b) Find the necessary and sufficient condition that a given system of forces acting upon a rigid body in equilibrium is that the force-sum and moment-sum must separately vanish.
- (c) A force F of magnitude 8 units acts at a point P(2, 3, 4) along the line:

$$\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}.$$

Find the moment of the force  $\overrightarrow{F}$  about *x*-axis.