This question paper contains 2 printed pages]

V-61-2017

FACULTY OF ARTS/SCIENCE

B.A./B.Sc. (Third Year) (Fifth Semester) EXAMINATION OCTOBER/NOVEMBER, 2017

MATHEMATICS

Paper XIV (MT-302)

(Linear Algebra)

(Friday, 10-11-2017)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

N.B. := (i) All questions are compulsory.

- (ii) Figures to the right indicate full marks.
- 1. Attempt any five of the following:

 $2 \times 5 = 10$

- (a) Define Homomorphism.
- (b) Define linearly independent.
- (c) Define Norm of V.
- (d) Define orthogonal complement of W.
- (e) If $T \in A(V)$, then define range of T.
- (f) Define characteristic vector of T.
- 2. Attempt any two of the following:

 $5 \times 2 = 10$

- (a) If $v_1, v_2, \dots, v_n \in V$ are linearly independent, then prove that every element in their linear span has a unique representation in the form $\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n \text{ with } \lambda_i \in F.$
- (b) If v is finite-dimensional and w is a subspace of v, then prove that A(A(w)) = w.
- (c) If F is the field of real numbers, then prove that the vectors (1, 1, 0, 0), (0, 1, -1, 0) and (0, 0, 0, 3) in $F^{(4)}$ are linearly independent over F.

P.T.O.

- 3. Attempt any *two* of the following : $5\times2=10$
 - (a) If $u,v \in V$, then prove that :

$$||u, v|| \le ||u|| ||v||.$$

- (b) If V is a finite-dimensional inner product space and W is a subspace of V, then prove that $(W^{\perp})^{\perp} = W$.
- (c) In v, prove the parallelogram law

$$||u + v||^2 + ||u - v||^2 = 2 (||u||^2 + ||v||^2)$$

4. Attempt any *two* of the following:

 $5 \times 2 = 10$

- (a) If A be an algebra, with unit element, over F, and suppose that A is of dimension m over F, then prove that every element in A satisfies some non-trivial polynomial in F[x] of degree at mast m.
- (b) If V is finite-dimensional over F then for S, $T \in A(A)$, prove that:
 - (i) $r(ST) \leq r(T)$
 - (ii) $r(TS) \le r(T)$
- (c) Let V be two-dimensional over the field F, of real numbers, with a basis v_1 , v_2 . Find the characteristic root and corresponding characteristic vectors for T defined by

$$V_1T = 5V_1 + 6V_2, V_2T = -TV_2.$$