This question paper contains 2 printed pages]

V-73-2017

FACULTY OF SCIENCE

B.Sc. (Third Year) (Fifth Semester) EXAMINATION NOVEMBER/DECEMBER, 2017

MATHEMATICS

Paper XV (B)

[Mechanics-I (Statics)]

(Monday, 13-11-2017)

Time: 10.00 a.m. to 12.00 noon

Time— 2 Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
- 1. Attempt any five of the following:
 - (a) Define like parallel forces.

2 each

- (b) Find the resultant of two forces whose magnitudes are 8 kg and 7 kg respectively at an angle of 60° .
- (c) Define equilibrium of system of forces.
- (d) State the Polygon of forces.
- (e) Define couple.
- (f) Define the motion of translation of the rigid body.
- 2. Attempt any two of the following:

5 each

- (a) Find the magnitude and direction of the resultant \vec{R} of two forces \vec{P} and \vec{Q} acting at an angle θ .
- (b) Find the resultant of two like parallel forces acting upon a rigid body.

P.T.O.

(c) If a transversal cuts the lines of action of the concurrent forces P, Q and R in A, B and C respectively R being the resultant of the two forces P and Q, show that:

$$\frac{P}{OA} = \frac{Q}{OB} = \frac{R}{OC}$$
.

3. Attempt any two of the following:

5 each

- (a) State and prove the converse triangle law of forces.
- (b) State and prove the polygon of forces.
- (c) Three forces of magnitudes P, Q, R acting on a particle are in equilibrium and the angle between P and Q is double the angle between P and R. Show that $R^2 = (Q P) Q$.
- 4. Attempt any two of the following:

5 each

- (a) Prove that the vector moment of a system of forces acting on a particle about any point is equal to the vector moment of their resultant about the same point.
- (b) Prove that the vector moment of the resultant couple of two couples acting upon a rigid body is the sum of the vector moments of the given couples.
- (c) Find the vector moment of a force \vec{F} of magnitude 10 units acting at a point (1, 2, 3) in the direction of the vector $2\vec{i} + \vec{j} + 2\vec{k}$ about the point (2, 3, 1).