This question paper contains 2 printed pages]
W—50—2018
FACULTY OF ARTS/SCIENCE

B.A./B.Sc. (Third Year) (Fifth Semester) EXAMINATION

OCTOBER/NOVEMBER, 2018
(CGPA Pattern)
MATHEMATICS
Paper XIII (MT-301)
(Metric Spaces)
(Saturday, 13-10-2018)
Time : 10.00 a.m. to 12.00 noon

Time-2 Hours

Maximum Marks-40
N.B. :- (i) All questions are compulsory.
(ii) Figures to the right indicate full marks.

1. Attempt any five of the following : 2 each
(a) Define Neighbourhood of a point.
(b) Define Subspace of a metric space (X, d)
(c) Define complete metric space.
(d) State Banach fixed point theorem.
(e) Define Compact metric space.
(f) Define separated sets on a metric space.
2. Attempt any two of the following : 5 each
(a) Let (X, d) be any metric space. Prove that A subset F of X is closed if and only if its complement in X is open.
(b) Let A and B be any two subsets of a metric space (X, d). Then prove that $\overline{\mathrm{A} \cup \mathrm{B}}=\overline{\mathrm{A}} \cup \overline{\mathrm{B}}$.
(c) Show that the set R^{n} of all ordered n-tuples with the function d defined by :
$d(x, y)=\sum_{i=1}^{n}\left(x i-y i^{2}\right)^{1 / 2}$,
for all $x=\left(x_{1}, x_{2}, \ldots . . x_{n}\right), y=\left(y_{1}, y_{2} \ldots \ldots y_{n}\right) \in \mathrm{R}^{n}$ is a metric space.
P.T.O.
3. Attempt any two of the following :
(a) Let (X, d) be any metric space and A be any non-empty subset of X , then prove that $x \in \overline{\mathrm{~A}}_{\text {if }}$ and only if there exists a sequence $\left\{x_{n}\right\}$ in A such that $x_{n} \rightarrow x$, as $n \rightarrow \infty$.
(b) Let $\left(\mathrm{X}, d_{1}\right)$ and $\left(\mathrm{Y}, d_{2}\right)$ be any two be any two metric spaces and f is a function from X into Y . Then prove that f is continuous at $a \in \mathrm{X}$ if and only if for every sequence $\left\{a_{n}\right\}$ converging to ' a ' we have $\lim _{x \rightarrow \infty} f\left(a_{n}\right)$ $=f(a)$.
(c) If $f(x)=x^{2}, a \leq x \leq \frac{1}{3}$, then prove that f is a contraction mapping on $\left[0, \frac{1}{3}\right]$ with the usual metric d.
4. Attempt any two of the following :
(a) Prove that every compact subset A of a metric space (X, d) is bounded.
(b) Let A be a connected subset of a metric X, and let B be a subset of X such that $A \underline{C B} \underline{A} \bar{A}$, then prove that B is also connected.
(c) Discuss the connectedness of the following subset of the Euclidean space R^{2} :
$\mathrm{D}=\{(x, y): x \neq 0$ and $y=\sin 1 / x\}.$.
