This question paper contains 2 printed pages]

W-50-2018

FACULTY OF ARTS/SCIENCE

B.A./B.Sc. (Third Year) (Fifth Semester) EXAMINATION

OCTOBER/NOVEMBER, 2018

(CGPA Pattern)

MATHEMATICS

Paper XIII (MT-301)

(Metric Spaces)

(Saturday, 13-10-2018)

Time : 10.00 a.m. to 12.00 noon

Time—2 Hours			Maximum Marks—40	
N.B.	: (<i>i</i>) All questions are compulsory.		
	()	<i>i</i>) Figures to the right indicate full marks.		
1.	Atten	npt any <i>five</i> of the following :	2 each	
	(<i>a</i>)	Define Neighbourhood of a point.		
	(<i>b</i>)	Define Subspace of a metric space (X, d)		
	(<i>c</i>)	Define complete metric space.		
	(<i>d</i>)	State Banach fixed point theorem.		
	(<i>e</i>)	Define Compact metric space.		
	(<i>f</i>)	Define separated sets on a metric space.		
2.	Atten	Attempt any <i>two</i> of the following : 5 each 5		
	(<i>a</i>)	Let (X, d) be any metric space. Prove that A subset F of X is closed		
		if and only if its complement in X is open.		
	(<i>b</i>)	Let A and B be any two subsets of a metric sp	pace (X, d). Then prove	
		that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.		
	(<i>c</i>)	Show that the set \mathbb{R}^n of all ordered <i>n</i> -tuples wit	h the function d defined	
		by :		
		$d(x, y) = \sum_{i=1}^{n} (xi - yi^2)^{\frac{1}{2}},$		

for all $x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$ is a metric space. P.T.O.

5 each

- 3. Attempt any *two* of the following :
 - (a) Let (X,d) be any metric space and A be any non-empty subset of X, then prove that $x \in \overline{A}$ if and only if there exists a sequence $\{x_n\}$ in A such that $x_n \to x$, as $n \to \infty$.
 - (b) Let (X, d_1) and (Y, d_2) be any two be any two metric spaces and f is a function from X into Y. Then prove that f is continuous at $a \in X$ if and only if for every sequence $\{a_n\}$ converging to 'a' we have $\lim_{x\to\infty} f(a_n) = f(a)$.

(c) If
$$f(x) = x^2$$
, $a \le x \le \frac{1}{3}$, then prove that f is a contraction mapping on $\left[0, \frac{1}{3}\right]$ with the usual metric d .

- 4. Attempt any *two* of the following : 5 each
 - (a) Prove that every compact subset A of a metric space (X, d) is bounded.
 - (b) Let A be a connected subset of a metric X, and let B be a subset of X such that \underline{ACBCA} , then prove that B is also connected.
 - (c) Discuss the connectedness of the following subset of the Euclidean space ${\rm R}^2\,$:
 - D = {(x,y) : $x \neq 0$ and $y = \sin 1/x$.}

WT

W-50-2018