This question paper contains 3 printed pages]

W - 82 - 2018

FACULTY OF SCIENCE

B.Sc. (Third Year) (Fifth Semester) EXAMINATION OCTOBER/NOVEMBER, 2018

(CBCS Pattern)

MATHEMATICS

Paper-XIV

(Complex Analysis)

(Friday, 19-10-2018)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks-40

N.B. : (i)All questions are compulsory.

- (ii)All questions carry equal marks.
- 1. Attempt any four of the following (each of 2 marks):

- 8
- Define modulus of complex number. Give geometrical representation (a) of modulus of z where z = x + iy.
- (*b*) Find argument of (-1, -1).
- Define Entire function. Give one example. (c)
- If $f(z) = z^2$, then $f(re^{i\theta}) = u(r, \theta) + iv(r, \theta)$, find $u(r, \theta)$ and $v(r, \theta)$. (d)
- Obtain $\log(-1 \sqrt{3}i)$ in terms of a + ib. (*e*)
- Show that: (f)

$$\log(i^{8}) \neq 3 \log i$$

- Attempt any two out of the following (each of 4 marks): 2.

8

- If $z_1 = -3 + 2i$ and $z_2 = 1 + 4i$, then which point is closer to origin (a) and why?
- (b) If z = x + iy is any complex number, find its :
 - Additive inverse (1)
 - (2)Multiplicative inverse.

State the condition when its multiplicative inverse exists.

Find all values of $(-8i)^{1/3}$. (c)

P.T.O.

- 3. Attempt any one of the following (each of 8 marks):
 - (a) (i) Show that if $f(z) = \frac{iz}{2}$ in the open disk |z| < 1 then $\lim_{z \to 1} f(z) = \frac{i}{2}$.
 - (ii) If f'(z) = 0 everywhere in a domain D, then f(z) must be constant throughout D.
 - (b) (i) If a function f(z) = u(x, y) + iv(x, y) is analytic in a domain D, then its component functions u and v are harmonic in D.
 - (ii) Obtain in harmonic conjugate of a given harmonic function:

$$u(x, y) = v^3 - 3x^2 y$$

- 4. Attempt any two out of the following (each of 4 marks):
 - (a) Show that:

2 sin
$$z_1$$
 . cos z_2 = sin $(z_1 + z_2) + \sin(z_1 - z_2)$.

(b) Find the value of z = x + iy such that :

$$e^z = 1 + i.$$

- (c) Show that for $n = 0, \pm 1, \pm 2, \dots \log e = 1 + 2m\pi i$.
- 5. Attempt any *one* of the following (each of 8 marks):
 - (a) Explain the method to find the *n*th roots of non-zero complex number z_0 , and hence find the square root of 2i.

(b) Let the function $f(z) = u(r, \theta) + iv(r, \theta)$ be defined throughout some \in neighbourhood of a non-zero point $z_0 = r_0 \exp(i\theta_0)$, and suppose that the first order partial derivatives of the function u and v with respect to r and θ exist everywhere in that neighbourhood. If those partial derivatives are continuous at (r_0, θ_0) and satisfy the polar form :

$$ru_r = v_\theta, u_\theta = -rv_r$$

of the Cauchy-Riemann equations at (r_0, θ_0) .

(c) Prove that:

log
$$z = \text{In } r + i(\theta + 2n\pi) \ (n = 0, \pm 1, \pm 2, \dots)$$

where z is any non-zero complex number. For $z=-1-\sqrt{3}i$ find $\log 3$.