This question paper contains 2 printed pages]

W-84-2018

FACULTY OF SCIENCE

B.Sc. (Fifth Semester) EXAMINATION OCTOBER/NOVEMBER, 2018

(CGPA Pattern)

MATHEMATICS

Paper XV

[Mechanics-I (Statics)]

(Friday, 19-10-2018)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

N.B. :— (i) All questions are compulsory.

- (ii) Figures to the right indicate full marks.
- 1. Attempt any five of the following:

2 each

- (a) Define like parallel forces.
- (b) If $\theta = 0$ i.e. when the two forces \vec{P} and \vec{Q} act along the same straight line and in the same direction then prove that:

$$R = P + Q$$
 and $\alpha = 0$

- (c) State Lami's theorem.
- (d) State Triangle Law of forces.
- (e) Define couple.
- (f) Define motion of rotation.
- 2. Attempt any two of the following:

5 each

- (a) Prove that the resultant of two forces given by m.OA and n.OB is represented by (m + n) OC, where the point C divides AB internally in the ratio n : m.
- (b) Find the resultant of two unlike parallel forces acting upon a rigid body.
- (c) A particle is acted upon by three forces in one plane, equal to 2, $2\sqrt{2}$ and 1 kg. The first force is horizontal, the second acts at 45° to the horizontal, and the third is vertical. Find the magnitude and direction of the resultant.

P.T.O.

3. Attempt any two of the following:

5 each

- (a) State and prove converse of the triangle law of forces.
- (b) Prove that the necessary and sufficient condition for a system of forces acting on a particle to be in equilibrium is that the algebraic sum of the resolved parts of the given forces along any three non-coplanar directions must separately vanish.
- (c) A particle is placed at the centre O of the circle inscribed in a \triangle ABC. Forces \overrightarrow{P} , \overrightarrow{Q} , \overrightarrow{R} acting along \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} respectively are in equilibrium. Prove that:

$$P:Q:R=cos\frac{A}{2}:cos\frac{B}{2}:cos\frac{C}{2}$$

4. Attempt any *two* of the following:

5 each

- (a) Prove that the sum of the vector moment of a system of forces acting on a particle about any point equals to the vector moment of their resultant about the same point.
- (b) Prove that the vector moment of the resultant couple of two couples acting upon a rigid body is the sum of the vector moments of the given couples.
- (c) Three forces \overrightarrow{P} , \overrightarrow{Q} , \overrightarrow{R} act along the sides BC, CA, AB of \triangle ABC, taken in order; prove that if the resultant passes through the incentre of \triangle ABC, then P + Q + R = 0, where P, Q, R are the magnitudes of the forces.