This question paper contains 3 printed pages]

B-79-2019

FACULTY OF SCIENCE

B.Sc. (Third Year) (Fifth Semester) EXAMINATION MARCH/APRIL, 2019

(CBCS)

MATHEMATICS

Paper-XIII

(Linear Algebra)

(Wednesday, 27-3-2019)

Time: 10.00 a.m. to 12.00 noon

Time-2 Hours

Maximum Marks—40

N.B. := (i) All questions are compulsory.

- (ii) Figures to the right indicate full marks.
- 1. Attempt any four of the following:

8

- (a) Define subspace of a vector space.
- (b) Write a standard basis of $F^{(n)}$.
- (c) State Schwarz inequality.
- (d) Define algebraic element of an extension of a field.
- (e) Define the term characteristic vector of T.
- (f) Give examples of linear transformations S and T such that TS = 1 but $ST \neq 1$.
- 2. Attempt any two of the following:

8

- (a) If V_1 , V_2 ,, V_n is a basis of a vector space V over F and if w_1, w_2, \ldots, w_m in V are linearly independent over F, then prove that $m \leq n$.
- (b) If U and V are vector spaces over F and $T: U \to V$ is a homomorphism then prove that Kernel of T is a subspace of U.
- (c) If W is a subspace of V, then prove that:

$$A(A(W)) = W.$$

P.T.O.

- 3. Attempt any one of the following:
 - (a) (i) If $\{V_i\}$ is an orthonormal set in an inner product space V then prove that the vectors $\{V_i\}$ are linearly independent. Also if $w=\alpha_1V_1+\alpha_2V_2+\dots+\alpha_nV_n$ then prove that $\alpha_i=(w,V_i)$ for $i=1,2,\dots,n$.
 - (ii) Let V be the set of all continuous complex-valued function on the closed unit interval [0, 1]. If $f(t), g(t) \in V$, define by:

8

8

$$(f(t), g(t)) = \int_{0}^{1} f(t) \cdot \overline{g(t)} dt.$$

then verify that this defines an inner product on V.

- (b) (i) Define orthogonal complement of subspace of a inner product space,
 and prove that if W is subspace of inner product space V over
 F, then W¹ is subspace of V.
 - (ii) If a, b, c are real numbers such that a > 0 and $a\lambda^2 + 2b\lambda + c \ge 0$ for all real numbers λ , then prove that :

$$b^2 \leq ac$$
.

- 4. Attempt any two of the following:
 - (a) If V is finite dimensional vector space over F and $T \in A(V)$ such that the constant term of the minimal polynomial for T is not zero then prove that T is invertible.
 - (b) If V is finite dimensional vector space over F, and $\lambda \in F$ is a characteristic root of $T \in A(V)$, then prove that for any polynomial $q(X) \in F[X]$, $q(\lambda)$ is a characteristic root of q(T).

(c) Let $V = F^{(3)}$ and suppose that $\begin{pmatrix} 1 & 1 & 2 \\ -1 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix}$ is the matrix of T in A(V)

in the basis V_1 = (1, 0, 0), V_2 = (0, 1, 0), V_3 = (0, 0, 1). Find matrix of T in the basis :

8

$$u_1 = (1, 1, 1), u_2 = (0, 1, 1), u_3 = (0, 0, 1).$$

- 5. Attempt any one of the following:
 - (a) If V and W are of dimension m and n, respectively over F, then prove that Hom(V, W) is of dimension mn over F.
 - (b) Prove that every finite dimensional inner product space has an orthonormal set as a basis.
 - (c) Define characteristic root of T in A(V) where V is finite dimensional vector space over F. And prove that characteristic vectors of T belonging to distinct characteristic roots are linearly independent over F.