This question paper contains 3 printed pages]

B—80—2019

FACULTY OF ARTS/SCIENCE

B.A./B.Sc. (Third Year) (Fifth Semester) EXAMINATION MARCH/APRIL, 2019

(CGPA Pattern)

MATHEMATICS

Paper-XIV (MT-304)

(Linear Algebra)

(Wednesday, 27-3-2019)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

N.B. := (i) All questions are compulsory.

- (ii) Figures to the right indicate full marks.
- 1. Attempt any five of the following:

2 each

- (a) Define internal direct sum of the vector space V.
- (b) If V is a vector space then define linearly dependent over F.
- (c) Define orthogonal in vector space.
- (d) Define an algebraic number.
- (e) Define characteristic vector of T.
- (f) Compute the following matrix:

$$\begin{pmatrix}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{pmatrix}.$$

P.T.O.

WT	(2)	B-80-2019

2. Attempt any two of the following:

5 each

- (a) If v_1, v_2, \dots, v_n is a basis of v over F and if w_1, w_2, \dots, w_m in V are linearly independent over F, then prove that $m \leq n$.
- (b) If v_1 , v_2 , v_n are in V then prove either they are linearly independent or some V_k is a linear combination of the preceding ones, v_1 , v_2 ,, v_{k-1} .
- (c) If F is the field of real numbers, then prove that the vectors (1, 1, 0, 0), (0, 1, -1, 0) and (0, 0, 0, 3) in $F^{(4)}$ are linearly independent over F.
- 3. Attempt any *two* of the following:

5 each

- (a) If $u, v \in V$ and $\alpha, \beta \in F$ then prove that : $(\alpha u + \beta v, \alpha u + \beta v) = \alpha \overline{\alpha}(u, u) + \alpha \overline{\beta}(u, v) + \overline{\alpha}\beta(v, u) + \beta \overline{\beta}(v, v).$
- (b) If V is a finite dimensional inner product space and if W is a subspace of V, then prove that:

$$V = W + W^1,$$

V is the direct sum of W and W¹.

- (c) In V define the distance $\xi(u, v)$ from u to v by $\xi(u, v) = ||u v||$, then prove that :
 - (i) $\xi(u, v) \ge 0$ and $\xi(u, v) = 0$ if and only if u = v
 - (ii) $\xi(u, v) = \xi(v, u)$
 - $(iii) \quad \xi(u, v) \le \xi(v, w) + \xi(w, v).$

WT (3) B—80—2019

4. Attempt any two of the following:

5 each

- (a) If $\lambda \in F$ is a characteristic root of $T \in A(V)$, then prove that for any polynomial $q(x) \in F[x]$, $q(\lambda)$ is a characteristic root of q(T).
- (b) If V is a finite-dimensional over F, then prove that $T \in A(V)$ is regular if and only if T maps V onto V.
- (c) Let V be two-dimensional over the field F, or real numbers, with a basis V_1 , V_2 . Find the characteristic roots and corresponding characteristic vectors for T defined by :

$$V_1T = V_1 + 2V_2, V_2T = 3V_1 + 6V_2.$$