This question paper contains 2 printed pages]

X-34-2019

FACULTY OF SCIENCE

B.Sc. (Third Year) (Fifth Semester) (Regular) EXAMINATION OCTOBER/NOVEMBER, 2019

(CBCS Pattern)

MATHEMATICS

Paper-XIV

(Complex Analysis)

(Thursday, 17-10-2019)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

N.B. := (i) All questions are compulsory.

- (ii) Figures to the right indicate full marks.
- 1. Explain the method to obtain the roots of a non-zero complex number z_0 . Hence obtain the square roots of $\sqrt{3} + i$.

Or

- (a) For a non-zero complex number z = (x, y) find its multiplicative inverse.
- (b) Using De-Moivre's formula derive the following identities: 7
 - (i) $\cos 3\theta = \cos^3 \theta 3 \cos \theta \sin^2 \theta$
 - (ii) $\sin 3\theta = 3 \cos^2 \sin \theta \sin^3 \theta$
- 2. Let the function $f(z) = u(r, \theta) + iv(r, \theta)$ be defined throughout some \in neighbourhood of a non-zero point $z_0 = r_0 \exp(i\theta_0)$ and suppose that : 15
 - (i) The first-order partial derivatives of the functions u and U with respect to r and θ exists everywhere in the neighbourhood.
 - (ii) Those partial derivatives are continuous at (r_0, θ_0) and satisfy the polar form $ru_r = v_\theta$, $u_\theta = -rV_r$ of the Cauchy-Riemann equations at (r_0, θ_0) . Then prove that $f'(z_0)$ exists and its value being $f'(z_0) = e^{-i\theta}(u_r + iv_r)$.

Hence if $f(z) = \frac{1}{z}$ then show that $f'(z) = \frac{-1}{z^2}$.

P.T.O.

WT (2) X—34—2019

Or

(a) Prove that a composition of continuous functions itself is continuous.

8

(b) If $f(z) = \frac{z}{z}$ then show that $\lim_{z \to 0} f(z)$ does not exist.

3. Attempt any two of the following

5 each

(a) For non-zero complex number z, prove that :

$$\log z = \ln r + i(2n\pi + \odot)$$

where

$$r = |z|, n = 0, \pm 1, \dots$$

(b) Find all values of z such that :

$$e^z = 1 + i$$
.

(c) Show that:

 $\sinh(z_1 + z_2) = \sinh z_1 \cosh z_2 + \cosh z_1 \sinh z_2.$

(d) Show that:

 $\log(i^3) \neq 3 \log i$.