This question paper contains 3 printed pages]

Y-56-2019

FACULTY OF ARTS/SCIENCE

B.A./B.Sc. (Fifth Semester) (Backlog) EXAMINATION OCTOBER/NOVEMBER, 2019

(CBCS Pattern)

MATHEMATICS

Paper XII

(Metric Spaces)

(Thursday, 17-10-2019)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

N.B. := (i) Attempt All questions.

- (ii) Figures to the right indicate full marks.
- 1. Attempt any *four* of the following:

2 each

- (a) Define a metric d on a set X.
- (b) Define adherent point in a metric space.
- (c) Define isometry function in a metric space.
- (d) State Banach fixed point theorem.
- (e) Define connected metric space.
- (f) Define finite intersection property.
- 2. Attempt any two of the following:

4 each

- (a) In any metric space (X, d), prove that the intersection of a finite number of open sets is open.
- (b) Let A and B be any two subsets of a metric space (X, d), then prove that:

 $\overline{\mathbf{A} \cup \mathbf{B}} = \overline{\mathbf{A}} \cup \overline{\mathbf{B}}$

P.T.O.

(c) Let (X, d) be any metric space. Show that the function d, defined by

$$d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}, \forall x, y \in X$$

is a metric on X.

3. Attempt any *one* of the following:

8 each

- (a) (i) Prove that every convergent sequence is a Cauchy sequence.
 - (ii) Show that the space C[0, 1] of all bounded continuous real-valued functions defined on the closed interval [0, 1] with the metric d given by

$$d(f, g) = \max_{0 \le x \le 1} |f(x) - g(x)|$$

is a complete metric space.

- (b) (i) Prove that the image of a Cauchy sequence under a uniformly continuous function is again a Cauchy sequence.
 - (ii) Let (X, d_1) and (Y, d_2) be metric spaces. Show that $f: X \to Y$ is continuous if and only if $f(\overline{A}) \subseteq \overline{f(A)}$, for every $A \subseteq X$.
- 4. Attempt any *two* of the following:

4 each

- (a) Prove that every closed subset of a compact metric space is compact.
- (b) Prove that continuous image of a connected set is connected.
- (c) Let X be an infinite set with the discrete metric. Show that (X, d) is not compact.

5. Attempt any one of the following:

8 each

(a) Show that the set \mathbb{R}^n of all ordered n tuples with the function d defined by

$$d(x, y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{1/2},$$

for all $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., x_n) \in \mathbb{R}^n$ is a metric space.

(b) Let (X, d_1) and (Y, d_2) be any two metric spaces and f is a continuous function from X into Y. Then prove that f is continuous at $a \in X$ if and only if, for every sequence $\{a_n\}$ converging to 'a', we have

$$\lim_{n\to\infty}f(a_n)=f(a).$$

- (c) Let Y be a subset of a metric space (X, d), then prove the following statements are equivalent:
 - (i) Y is connected
 - (ii) Y cannot be expressed as disjoint union of two non-empty closed sets in Y.