This question paper contains 3 printed pages]

Y-79-2019

FACULTY OF SCIENCE

B.Sc. (Third Year) (Fifth Semester) (Backlog) EXAMINATION NOVEMBER/DECEMBER, 2019

(CBCS Pattern)

MATHEMATICS

Paper XIII

(Linear Algebra)

(Monday, 23-12-2019)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
- 1. Attempt any four of the following:

8

- (a) Define homomorphism of vector space.
- (b) Define annihilator of subspace of vector space.
- (c) Define an algebraic number.
- (d) Define inner product space.
- (e) Define an algebra over field.
- (f) Define range of linear transformation.
- 2. Attempt any *two* of the following:

8

(a) Prove that if v_1 , v_2 , $v_3...v_n$ are in V, then either they are linearly independent or some V_k is a linear combination of the preceding one's v_1 , v_2 ,... v_{k-1} .

P.T.O.

- (b) If V is finite dimensional and $v \neq 0 \in V$, then prove that there is an element $f \in \hat{V}$ s.t. $f(v) \neq 0$.
- (c) Prove that the intersection of two subspaces of V is a subspace of V.
- 3. Attempt any one of the following:

(a)

- (i) If $u, v \in V$ and $\alpha, \beta \in F$ then prove that : $(\alpha u + \beta v, \alpha u + \beta v) = \alpha \overline{\alpha}(u, u) + \alpha \overline{\beta}(u, v) + \overline{\alpha}\beta(v, u) + \beta \overline{\beta}(v, v)$
- (ii) If V is a finite dimensional inner product space and W is a subspace of V, then prove that $(W^{\perp})^{\perp} = W$.
- (b) (i) If $u, v \in V$, then prove that $|(u,v)| \le ||u|| ||\cdot||v|||$.
 - (ii) Let V be the set of real functions y = f(x) satisfying $\frac{d^3y}{dx^3} 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} 6y = 0$, then prove that V is a three dimensional real vector space.

8

- 4. Attempt any two of the following:
 - (a) Prove that the element $\lambda \in F$ is a characteristic roots of $T \in A(V)$ iff for some $v \neq 0$ in V, $vT = \lambda v$
 - (b) Let V be a vector space of continuous functions on [0, 1] and a map $T: V \to R$ by for f in V

$$\mathbf{T}(f) = \int_0^1 f(x) dx,$$

show that T is linear transformation

(c) Compute the following matrix product:

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & 2 \\ 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 3 \\ -1 & -1 & -1 \end{pmatrix}$$

- 5. Attempt any *one* of the following:
 - (a) If V is finite dimensional and W is subspace of V then prove that W is finite dimensional, $\dim W \leq \dim V$ and $\dim (V/W) = \dim V \dim W$
 - (b) Define an orthonormal set. If $\{w_1, w_2, ... w_m\}$ is an orthonormal set in V, prove that :

$$\sum_{i=1}^{m} |(w_i, v)|^2 \le ||v||^2 \text{ for any } v \in V:$$

(c) If V is finite dimensional vector space over F, then prove that $T \in A(V)$ is invertible iff the constant term of the minimal polynomial for T is not zero.