This question paper contains 2 printed pages]

Y-80-2019

FACULTY OF SCIENCE

B.Sc. (Third Year) (Fifth Semester) (Backlog) EXAMINATION NOVEMBER/DECEMBER, 2019

(CGPA Pattern)

MATHEMATICS

Paper XIV (MT-302)

(Linear Algebra)

(Monday, 23-12-2019)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
- 1. Attempt any *five* of the following:

2 each

- (a) Define Quotient space.
- (b) State Schwarz inequality.
- (c) Define Linear combination of vectors.
- (d) Define norm of a vector.
- (e) Define algebra over a field.
- (f) Define characteristic vector.
- 2. Attempt any two of the following:

5 each

- (a) If V is finite dimensional and W is a subspace of V, then prove that \hat{W} is isomorphic to $\hat{V}/A(W)$.
- (b) If $v_1, v_2, \ldots, v_n \in V$ are linearly independent, then prove that every element in their linear span has a unique representation in the form $\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n$ with the $\lambda_i \in F$.
- (c) If F is a field of real numbers, prove that the vectors (1, 1, 0, 0), (0, 1, -1, 0) and (0, 0, 0, 3) if $F^{(4)}$ are linearly independent over F.

P.T.O.

3. Attempt any two of the following:

5 each

- If V is a finite-dimensional inner product space and if W is a subspace (a)of V, then prove that V is the direct sum of W and W^{\perp} .
- (*b*) If V is the set of all continuous, complex valued functions on [0, 1] if for f(t), $g(t) \in V$ we have

$$(f(t), g(t)) = \int_{0}^{1} f(t) \overline{g(t)} dt.$$

Then prove that this defines an inner product on V.

- (c) If V is finite-dimensional inner product space and W is a subspace of V, then prove that $(W^{\perp})^{\perp} = W$.
- Attempt any two of the following: 4.

5 each

- (a)Prove that, if $\lambda \in F$ is a characteristic root of $T \in A(V)$, then for any polynomial $q(x) \in F[x]$, $q(\lambda)$ is a characteristic root of q(T).
- (*b*) If v is finite-dimensional over F, then $T \in A(v)$ is singular iff there exists a $v \neq 0$ in v such that vT = 0.
- (c) Let v be two-dimensional over the field F of real numbers, with a basis v_1, v_2 . Find the characteristic roots and corresponding characteristic vectors for T defined by

$$v_1 \mathbf{T} = v_1 + v_2, \ v_2 \mathbf{T} = v_1 - v_2.$$