This question paper contains 2 printed pages]

Y-98-2019

FACULTY OF SCIENCE

B.Sc. (Third Year) (Fifth Semester) (Backlog) EXAMINATION OCTOBER/NOVEMBER, 2019

(CGPA Pattern)

MATHEMATICS

Paper XV

[Mechanics-I: (Statics)]

(Tuesday, 19-11-2019)

Time: 10.00 a.m. to 12.00 noon

Time— Two Hours

Maximum Marks—40

N.B. := (i) All questions are compulsory.

- (ii) Figures to the right indicate full marks.
- 1. Attempt any *five* of the following:

2 each

- (a) Define equilibrium.
- (b) Define resultant of forces.
- (c) State law of polygon of forces.
- (d) State converse of the triangle law of forces.
- (e) Define motion of rotation.
- (f) Define couple.
- 2. Attempt any *two* of the following:

5 ecah

- (a) Determine the magnitude and direction of the resultant \overrightarrow{R} when the magnitudes of the two forces \overrightarrow{P} and \overrightarrow{Q} are equal.
- (b) Find the magnitude and direction of the resultant of any number of coplanar forces acting at a point.
- (c) Find the smaller force, when the forces act at an angle of 120°, the greater force is of 30 kg and resultant is perpendicular to smaller one.

P.T.O.

3. Attempt any *two* of the following:

5 each

(a) Prove that if three forces of magnitudes P, Q and R respectively acting on a particle are in equilibrium, each is proportional to the sine of the angle between the other two:

i.e.
$$\frac{P}{\sin \alpha} = \frac{Q}{\sin \beta} = \frac{R}{\sin \gamma}$$

- (b) Prove that the necessary and sufficient condition for a system of forces acting on a particle to be equilibrium is that the algebraic sum of resolved parts of the given forces along any three non-coplanar directions must separately vanish.
- (c) A uniform plane lamina in the form of a rhombus, one of whose angle is 120°, is supported by two forces applied at the centre in the direction of the diagonals so that one side of the rhombus is horizontal. Prove that if P and Q be forces and P > Q, then:

$$P = \sqrt{3}Q$$

4. Attempt any two of the following:

5 each

- (a) Prove that sum of the vector moments of two like parallel forces acting on a rigid body about any point equals to the vector moment of their resultant about the same point.
- (b) Prove that the necessary and sufficient condition that a given system of forces acting upon a rigid body is in equilibrium is that the forcesum and moment-sum must separately vanish.
- (c) Find the vector moment of force \vec{F} of magnitude 10 units acting at a point (1, 2, 3) in the direction of the vector $2\vec{i} + \vec{j} + 2\vec{k}$ about the point (2, 3, 1)