3/17/2021

Г

https://srtmun-admin.epariksha.net/InstituteAdmin/Reports/AllQuestions.aspx

CG-11-2020

WINTER EXAM 2020 Subject Name : RB-10 MATHEMATICS - Metric Spaces – XII (CBCS) V				
Date : 17/03/2021			Duration : 60 min.	
- Instruction / सुचना / :-				
* Follow the detail instructions given on OMR Sheet * ओ एम आर वरील सर्व सूचनांचे पालन करावे.				
Q.1 If R ⁿ is the set of all ordered n-Tuples with the function 'd' defined by $d(x, y) = \sqrt{\sum^{1} (x_i - y_i)^2}$, $\forall x.y \in \mathbb{R}^n$ then d is called as A) Usual metric B) Discrete metric C) Euclidean metric D) None of these	114	114		
A]A B]B	C]C D]D			
Q.2 The diameter of any non-empty subset A, of a metric space (x,d), is defined as $d(A) = A$) Sup {d(a,b) : a, $b \in A$ } B) inf {d(a,b) : a, $b \in X$ } C) Sup {d(a,x) : $x \in X$ } D) inf {d(a,x) : $x \in X$ }	114	114		
A]A B]B	C]C D]D			
Q.3 Let (x,d) be any metric space and $a \in X$. Then an open sphere of radius r>o, centered at a is defined as A) {xEX : $d(x, a) \le r$ } B) {xEX : $d(x, a) < r$ } C) {xEX : $d(x, a) \ge r$ } D) {xEX : $d(x, a) < r$ }	114	114		
A]A B]B	C]C D]D			
Q.4 Which of the following statement is not correct ? A]In siscrete metric space, eveyr singletion set is onepn B]In a usual metric space, the singleton set is noit open	C]Both (& (D]Neither (A) nor (B)	114		
Q.5 In any metric space, the set F is closed if A]it contains all its limit points B]Its complement is open	C]Both (& (D]Neither (A) nor (B)	114		
Q.6 If R is the set of real numbers with usual metric 'd' and A =]o, 1 [, then the set of A]] a, b [B][a, b [all limit point of A is C]] a, b] D][a, b]	114		
Q.7 Every closed sphere is 114 A]an open set B]a closed set	C]a semi - open set D]a semi close set	114		
Q.8 If A is any subset of a metric space (x, , then A]A is a close set B]A = A if and only if A is closed	C]both (& (D]Neither (A) nor (B)	114		
A subse A of a metric space (x, d) is said to be dense is X if A) $A = \phi$ B) $A = A$ C) $A = X$ D) None of the above Q.9 A]A B]B	cjc DjD	114		
Q.10 The set of integers has 114 A]a unique limit point B]finite number of limit points	C]infinite number of limit points D]no limit point	114		
Q.11 The arbitrary union of closed sets A]is a closed set B]need not be a closed set	C]an open set D]None of the above	114		
Q.12 114	114	114		

3/17/2021

Let (x, d) be any metric space and let $d^{1}(x, y) = \frac{d(x, y)}{1 + d(x, y)}$, $\forall x, y \in X$		
then,		
A) d ¹ is also a metric on X B) d and d ¹ are equivalent		
C) Both (A) and (B) D) None of the above		
D) None of the above		
A]A BIR	C]C	
	ענט	
Q.13 If V is a subcrace of a metric space (x, d) then the open sphere $S^{y}(y)$ in (Y, dy) is given by	114	114
A) $S_r(y) \cap y$		
B) $S_{f}(y) \cap x$ C) $S_{f}(y) \cap \{y\}$		
D) None of the above		
A]A	C]C	
B]B	D]D	
Q.14 114	114	114
In a metric space (x, d) , which of the following statement is correct?		1.1.7
B) Every open sphere is an open set		
C) Every closed sphere is a closed set		
	010	
B]B	CJC D]D	
		4.4.4
Q.15 A point aEX is an adherent point of a subset A of X if every open sphere center A]contains a point of A	ed at 'a' C]is an empty set	114
B]not contains a point of A	D]None of the above	
Q.16 114	114	114
A sequence $\{xn\}$, of points of a metric space (x,d) is called cauchy sequence if for each $E > O$, \exists a positive integer no such that $\forall n, m > no$		11-
A) $d(xn, xm) < E$ B) $d(xn, xm) < E$		
C) $d(x_1, x_2) \ge E$ D) None of the above		
AJA B]B	D]D	
	444	
A]Open set	C]Closed set	4
B]Complete set	D]None of the above	
Q.18 "Every complete metric space is of second category" is known as	114	114
A]Cantor's Intersection Theorem B]Baire's category Theorem	C]Banach fixed point Theorem D]None of the above	
444		A.A.A.
Q.19 Let (x,d) be a complete metric space and let {Fn} be a decreasing sequence of non-empty	114	114
closed subset of x such that $(d(f_n) \to O \text{ as } n \to \infty \text{ then } F \stackrel{=}{\twoheadrightarrow} \bigcap_{n=1}^{f_n} f_n$ contains		
A) exactly one point B) finite number of points		
C) infinite number of points D) None of the above		
	016	
AJA B]B	C]C D]D	
4.4.4	AA	4.4.4
Q.20 Which of the following statement is correct ? A]Every convergent sequence is a cauchy sequence.	ClBoth (and (114
B]Every cauchy sequence is a convergent sequence	((
	D]Neither (A) nor (B)	
Q.21 11	D]Neither (A) nor (B)	114
Q.21 The function $f: (x d_1) \rightarrow (y, d_2)$ is said to be continuous if it is continuous at A) only one point of x	D]Neither (A) nor (B)	114
Q.21 The function $f: (x d_1) \rightarrow (y, d_2)$ is said to be continuous if it is continuous at A) only one point of x B) each point of x	D]Neither (A) nor (B)	114
Q.21 The function $f: (x d_1) \rightarrow (y, d_2)$ is said to be continuous if it is continuous at A) only one point of x B) each point of x C) finite number of point of x D) None of the above	D]Neither (A) nor (B)	114
Q.21 The function $f: (x d_1) \rightarrow (y, d_2)$ is said to be continuous if it is continuous at A) only one point of x B) each point of x C) finite number of point of x D) None of the above Ala	D]Neither (A) nor (B)	114
Q.21 The function $f: (x d_1) \rightarrow (y, d_2)$ is said to be continuous if it is continuous at A) only one point of x B) each point of x C) finite number of point of x D) None of the above A]A B]B	D]Neither (A) nor (B) 114 C]C D]D	114
Q.21 The function $f: (x d_1) \rightarrow (y, d_2)$ is said to be continuous if it is continuous at A) only one point of x B) each point of x C) finite number of point of x D) None of the above A]A B]B	D]Neither (A) nor (B) 114 C]C D]D	114

The function $f_{\cdot}(x, d_1) \rightarrow (y, d_2)$ is continuous if and only if (A) $f^{-1}(G)$ is open in X whenever G is open in X		
B) f^{-1} (F) is closed x whenever F is closed in Y.		
C) Both (A) and (B) D) Neither (A) nor (B)		
Q.22 AlA	ClC	
B]B	D]D	
The constant function $f_{2}(x d_{1}) \rightarrow (y d_{2})$ is A) continuous on x B) continuous on y C) not continuous on x Q23 D) not continuous on y	114	114
A]A B]B	C]C D]D	
Every unformly continuous function $f: (x d_1) \rightarrow (y d_2)$ is A) continuous on x B) not continuous on x C) not continuous on y O 24 D) none of the above	114	114
A]A B]B	C]C D]D	
A function $f: (x d) \rightarrow (y d^{1})$ is called on isometry if $\forall x, yEx$ A) $d(x y) = (x, y)$ B) $d^{1}(x y) = (x, y)$ C) $d(x, y) = d^{1}(f(x), f(y))$ Q 25 D) None of the above	114	114
AJA BJB	C]C D]D	
Q.26 A function $f: (x, d) \rightarrow (x, d)$ is said to be a contraction mapping if \exists a positive real number \propto < I such that $\forall x, y Ex$ A) $d(x y) < \propto . d(x, y)$ B) $d(f(x), f(y)) < \propto . d(x, y)$ C) $d(f(x), f(y) < \propto . d(f(x), y)$ D) None of the above	114	114
A]A B]B	C]C D]D	
Q.27 Any contraction mapping f of a non-empty complete metric space (x, d) into itself has A) a unique fixed point B) two fixed points C) finite number of fixed point D) None of the above	114	114
AJA BJB	C]C D]D	
Q.28 If $f(x) = x^2$, $o \le x \le 1/3$, is a contraction mapping on $[o, 1/3]$ with A) the usual metric B) Discrete metric C) Euchidean metric D) None of the above	114	114
A]A B]B	C]C D]D	
Q.29 A subset A of a metric space (x is compact if every open coves of A admits A]a subcover B]a finite subcover	C]an infinite subcover D]None of the above	114
Q.30 Every compact subset F of a metric space (x, is A]an empty set B]an open set	C]a closed set D]None of the above	114
Q.31 Every compact subset A of a metric space is A]closed set B]bounded	C]both (and (D]Neither (A) nor (B)	114
Q.32 continuous image of compact set is A]compact B]continuous	C]not continuous D]None of the above	114

Q.33 A metric space (x, is said to have Bolzano-Weierstrass Property if every infinite subset of x has

https://srtmun-admin.epariksha.net/InstituteAdmin/Reports/AllQuestions.aspx

3/17/2021 https://srtmun-	-admin.epariksha.net/Instit	uteAdmin/Reports/AllQuestions.aspx
A]a fixed point B]a limit point 114	C]a isolated point D]None of the above	114
Q.34 A metric space is sequentialey compact, if every convergent sequence has A]an infinite subsequence B]a convergent subsequence	C]a subsequence D]none of the above	114
Q.35 Two sets A and B in a metric space (x, d) are said to be separated is A) $A \cap \overline{B} = \phi$ B) $\overline{A} \cap B = \phi$ C) Both (A) and (B) D) None of the above	114	114
A]A B]B	C]C D]D	
Q.36 Two disjoint set A and B are 14 A]separated B]not separated	C]either ('or (D]Neither (A) nor (B)	114
Q.37 Which of the following statements are equivalent A) y is connected B) y cannot be expressed as disjoint union of two non-empty closed sets in y. C) ϕ and y are the only sets which are both open and closed in y. D) All of the above	114	114
A]A B]B	C]C D]D	
Q.38 The union of two connected sets is connected if it has A]empty intersection B]non-empty intersection	C]a single point D]none of these	114
Q.39 Continuous image of connected set is A]connected B]not connected	C]separated D]None of the above	114
In the Euclidean space \mathbb{R}^2 , $\mathbb{D} = \{(x, y) : x \neq 0, y = \sin 1/x\}$ is A) connected B) not connected C) compact D) None of the above	114	114
A]A B]B	C]C D]D	