2/4	0	ŝ	^	24
J/ I	o	12	υ	Z I

https://srtmun-admin.epariksha.net/InstituteAdmin/Reports/AllQuestions.aspx

CG-11-2020 WINTER EXAM 2020

Subject Name : RB-18_MATHEMATICS - Linear Algebra - XIII (CBCS)_V_18-03-2021

Date : 18/03/2021 Duration : 60 min. Instruction / स्चना / :-* Follow the detail instructions given on OMR Sheet * ओ एम आर वरील सर्व सचनांचे पालन करावे. 114 Δ Q.1 If V is a vector space over a field F, then for all ∝∈ F and for all v, $w \in V$, which of the following is correct ? $(\wedge + \wedge) \propto = \wedge \propto + \wedge \wedge \propto$ b) $(v+w) \propto = \infty v + \infty w$ $C) \quad \propto (\vee + \vee \vee) = \vee \propto + \vee \vee \propto$ d) $\alpha(\vee + \vee \vee) = \alpha \vee + \alpha \vee \vee$ Q.2 If F is a field and K is a field which contains F as a subfield, then which of the following is a vector space ? A]F is a vector space over K C]Both F is a vector space over K and K is a vector space over F B]K is a vector space over F D]Neither F is a vector space over K nor K is a vector space over F Q.3 Which of the following is the criterion for a nonempty subset W of a vector space V over a field F to be a subspace of ∨ ? $\text{a)} \quad \propto_1 \beta \in F \And w_1, w_2 \in W \Rightarrow \propto w_1 + \beta W_2 \in$ w b) $\propto_1 \beta \in F \& w_1, w_2 \in W \Rightarrow \propto w_1 + \beta W_2 \in V$ $\alpha_1 \beta CF \& w_1, w_2 \in W \Rightarrow \alpha w_1 + \beta W_2 \in F$ C) $\propto_1\beta\in F\And w_1,w_2\in W\Rightarrow \propto w_1+\beta W_2\in$ d) v – w Q.4 What is an isomorphism? C]An onto homomorphism A]Just a homomorphism B]A one - to - one homomorphism D]A one-to-one onto mapping Q.5 If U and V are vector spaces over F and T is a homomorphism of U and V, the what is kernel of Τ? a) $\{u \in U \mid uT = O\}$ b) $\{u \in U \mid uT = 1\}$ $\{v \in V \mid oT = v\}$ C) d) $\{v \in V \mid \exists T = \lor\}$ Δ Q.6 If \lor is a vector space over F, the for all $\propto \in F$, $v \in V$, ∝ (−v) = ? a) ∝ V b) $\alpha^{-1} \vee$ c) $\propto V^{-1}$ d) - (2∨) Q.7 If V is a vector space over F and If W is a subspace of V, then what is the quotient space V / W'a) $\{v + W \mid v \in V\}$ b) {v − W | v∈V} $\{v.W \mid v \in V\}$ C) d) $\{v \div W \mid v \in V\}$ Q.8 When is a vector space V over F said to be finite - dimensional? A]If there exists any finite set S such that L(S) = V C]If there exists any finite subset S of V such that L(S) = V B]If there exists any infinite set S such that L(S) = V D]If there exist any infinite subset S of V such that L(S) = V

3/18/2021	https://srtmun-admin.epariksha.net/InstituteAdmin/Reports/AllQuestions.aspx			
Q.9 If V is a vector space over F, the when are V_1 , V_2 , $V_n \in V$ said to be linearly independent over F? a) If, and only if, there exist elements λ_1, λ_2 , , $\lambda_n \in F$, not all of them zero (i.e., at least one of them is non-zero) such that $\lambda_1 V_1 + \lambda_2 V_2 + \dots + \lambda_n + V_n = 0$ b) If, and only if, there exist elements λ_1, λ_2 , , $\lambda_n \in F$, not all of them zero (i.e., at least one of them is non-zero) such that $\lambda_1 V_1 + \lambda_2 V_2 + \dots + \lambda_n + V_n = 1$ c) Whenever $\lambda_1 V_1 + \lambda_2 V_2 + \dots + \lambda_n + V_n = 0$ each $\lambda_i = 0$ d) Whenever $\lambda_1 V_1 + \lambda_2 V_2 + \dots + \lambda_n + V_n = 0$ each $\lambda_i = 1$	114	114		
Q.10 If a basis of a vector space V over F contains n number of elements and any other subset of linearly inclependent vectors contains m number of elements, the how are n & m related? a) $m = n$ b) $m \ge n$ c) $m \le n$ d) $m \ne n$	114	114		
Q.11 If V is a finite-dimensional vector space of dimension m over F, then what is the dimension of Hom $(V_1 V')$? a) m^2 b) $2m$ c) m^m d) m	114	114		
Q.12 If \lor is a vector space over F, then what its dual space? a) Hom (V_1V) b) Hom (V_1F) c) Hom (F_1V) d) Hom (F_1F)	114	114		
Q.13 If W is a subspace of a vector space V over F, the A (A (W)) =? a) W b) A(W) c) V - W d) $V/_W$	114	114		
Q.14 If W is a subspace of a vector space V over F, then it $A]_V$ $B]_F$	s annihilator A (W) is subspace of which vector space ? C]Dual space of V D]Second dual space of V	114		
Q.15 If V is an inner product space over F and $u \in V$ is such that $(u_1u) = 0$, the $u = ?$ a) 0 b) 1 c) -1 d) Arbitrary (any vector)	114	114		
Q.16 If V is an inner product space over F, the for all u, v. weV and for all $\alpha_1 \beta \in F$, $(\alpha u + \beta V, w) =$? a) $(\alpha u, \alpha w) + (\beta V, \beta w)$ b) $\beta (u, w) + \alpha (V, w)$ c) $(u, \alpha w) + (V, \beta w)$ d) $\alpha (u, w) + \beta (V, w)$	114	114		
Q.17 114	114	114		

If V is an inner product space over F, then for all $u \in V$ and for all $\infty \in F$, $\ \propto u \ = 7$ a) $\propto . u$		
b) ∝ • u c) ∝ • u d) ∝ • u		
Q.18 Which of the following is Schwarz inequality for <i>u</i> . <i>v</i> belonging to an inner product space V over F ? a) $ (u, v) \ge \gamma \cdot v $ b) $ (u, v) \ge \gamma \cdot v $ c) $ (u, v) \le \gamma \cdot v $ d) $ (u, v) < \gamma \cdot v $	114	114
Q.19 In an inner product space V over F, when is a vector u said to be orthogonal to a vector V? a) $(u, v) = 0$ b) $(u, v) > 0$ c) $(u, v) < 0$ d) $(u, v) \neq 0$	114	. 114
Q.20 If W is a subspace of an inner-product space V over a field F, then what is the orthogonal complement of W ? a) $\{x \in V \mid (x, \omega) = 1$, for all $\omega \in W$ } b) $\{x \in V \mid (x, \omega) = 0$, for all $\omega \in W$ } c) $\{x \in V \mid (x, \omega) = < 0$ for all $\omega \in W$ } d) $\{x \in V \mid (x, \omega) = > 0$ for all $\omega \in W$ }	114	114
Q.21 How is every orthonormal set of vectors in an inner product space V o A]Empty B]Linearly dependent	ver a field F ? C]Linearly independent D]Equal to V	114
Q.22 If V is a finite-dimensional inner product space over a field F and W is A]W B]Orthogonal complement of W	any subspace of V, then V is always equal to wh C]Direct sum of W and its orthogonal compler D]Cannot be obtained for W & its orthogonal of	ich of the following?
Q.23 If u and v are any two vectors in a finite- dimensional inner product space V over a field F, then what is the formula $ u + v ^2 + u - v ^2 =$ 2 ($ u ^2 + v ^2$) called? a) Triangle Law b) Quadrilateral Law c) Square Law d) Parallelogram Law	114	114
Q.24 If F is f field and K is a field that contains F, then what is K is called? A]Subfield of F B]Subspace of F	114 C]Extension of F D]Quotient space of F	114
Q.25 If K is an extension of a field F, then what is degree of K over F ? a) Order of K b) Order of K/ $_F$ c) Order of K – F d) Dimension of K as a vector space over F	114	114
Q.26 When is an extension K of a field F said to be algebraic extension? A]If no element of K is algebraic over F B]If every element of K is algebraic over F	114 C]If no element of F is algebraic over K D]If every element of F is algebraic over K	114
Q.27 What is an algebraic number? A]A real number which is algebraic over the field of rational number	114 s C]A complex number which is algebraic over t	114. he field of rational numbers

3/18/2021

https://srtmun-admin.epariksha.net/InstituteAdmin/Reports/AllQuestions.aspx

B]An imaginary number which is algebraic over the field of rational numbers.

numbers			
Q.28 If \lor is a vector space over a field \lor then $T_2 \in \operatorname{Hom}(v_1v)$, how is the mapping defined ? a) $\lor (T_1 + T_2) = T_1 + T_2, \forall v \in \lor$ b) $\lor (T_1 + T_2) = VT_1 + T_2, \forall v \in \lor$ c) $\lor (T_1 + T_2) = T_1 + VT_2, \forall v \in \lor$ d) $\lor (T_1 + T_2) = VT_1 + VT_2, \forall v \in \lor$	for any T_1 . $T_1 + T_2$	14	. 114
Q.29 If V is a vector space over a field F, t A]Functions B]Functionals	hen what are the elements of A (v) called)? C]Isomorp D]Linear T	14 hisms fransformations	114
Q.30 For a vector space V over a field F, where V over	en is a T ∈ A	14	114
Q.31 If V is a finite-dimensional vector space F and T \in A (V) is invertible, then what constant term in the minimal polynom a) 0 b) 1 c) -1 d) Non-Zero	over a field t is the hial for T?	14	114
Q.32 If S, T \in A (V) are such that S is rugular which of the following is true? a) $r(T) = r(STS^7)$ b) $r(T) > r(STS^7)$ c) $r(T) < r(STS^7)$ d) $r(T) \neq r(STS^7)$	then 1	14	. 114
Q.33 For a finite-dimensional vector space V F, and for TE A (V), when is $\lambda \in F$ said characteristic root of T? a) If $\lambda - T$ is invertibale b) If $\lambda - T$ is invertibale c) If $\lambda + T$ is invertibale d) If $\lambda + T$ is singular	over a field to be a	14	114
Q.34 If $\lambda \in F$ is a characteristic root of T $\in A(X)$ which of the follwing is guaranteed? a) λ is a root of minimal polynom b) λ is a root of maximal polynom c) λ is not a root of minimal polynom d) λ is not a root of maximal polynom	/), then ial of T ial of T nomial of T nomial of T	14	114
Q.35 What is characteristic vector of a lineal transformation belonging to a charact of T? a) Any vector V such that $VT = V$ b) Any vector V such that $VT = \lambda$ c) Any non-zero vector V such that d) Any non-zero vector V such that	eristic root λ \forall at $\forall T = \lor$ at $\forall T = \lambda \lor$	14	114
Q.36 114	. 1	14	114

3/18/2021

 If λ₁, λ₂, λ_n are distinct characteristic roots of T∈ A (v) and If V₁, V₂, V_n are charucteristic vectors of T belonging to charucteristic rootsλ₁, λ₂,, λ_n, respectively, then how are V₁, V₂,, V_n ? a) Linearly dependent b) Linearly independent c) Mutually orthogonal d) Orthonormal 			
Q.37 If V is n-dimensional vector space over F, then for TE A (v), what is the order of matirx T in any basis of V? a) n b) $n \times n$ c) n^2 d) 2n	114	114	
Q.38 If \lor is a n-dimensional vector space over a field F; V_1, V_2, \dots, V_n is a basis of \lor over F and for T \in A (v), If $V_i T = \sum \propto i_j V_j$, then what is the matrix of T in the basis V_1, V_2, \dots, V_n ? a) ($\propto i$) b) (\propto_j) c) ($\propto i_j$) d) ($\propto j_i$)	114	114	
Q.39If \lor is a n-dimensional vector space over a field F; V_1, V_2, \dots, V_n is a basis of \lor over F and for Te A(v).M (T) is the matrix of T in the basis V_1, V_2, \dots, V_n .then how is the mapping $\top \rightarrow m(T)$?a) Only vector space homomorphism of A(v)onto F_n b) An algebra isomorphism of A(V) onto F_n c) Only ontod) Only one – to – one	114	114	
Q.40 If v is a n-dimensional vector space over a field F and If TeA (V) has a matrix, m_1 (T) in the basis v_1, v_2, \dots, v_n of V and matrix m_2 (T) in the basis $\omega_1, \omega_2, \dots, \omega_n$ of V, the which of the following is correct? a) m_2 (T)= (m_1 (T) ⁻¹ , for some matrix C \in F_n b) m_1 (T)= (m_2 (T)	114	114	

c) $m_2(T) = (m_1(T)^2)^2$ d) $m_1(T)$ and $(m_2(T))$ are not related.

.