This question paper contains 2 printed pages]

BF-105-2016

FACULTY OF SCIENCE

B.Sc. (Third Year) (Fifth Semester) EXAMINATION

NOVEMBER/DECEMBER, 2016

(Old Course)

PHYSICS

Paper-XIII-A

(Solid State Physics)

(Friday, 9-12-2016)

Time—2 Hours

Time: 10.00 a.m. to 12.00 noon

Maximum Marks—40

N.B. := (i) All questions are compulsory.

(ii) All questions carry equal marks.

1. Attempt any four:

8

- (a) Define Lattice and Basis.
- (b) What is meant by point and space group?
- (c) Enlist any four assumptions of classical theory of specific heat.
- (d) Write four outstanding properties of metals.
- (e) Define N and P type semiconductors.
- (f) What are donor and acceptor levels?
- (g) State Wiedemann-Franz Law.
- 2. Attempt any two:

8

- (a) Draw the diagrams for the conventional unit cells of triclinic, monoclinic, cubic and trigonal Bravais lattice.
- (b) Derive an expression for specific heat of solid using Einstein's model.
- (c) Describe PN junction theory in brief.
- 3. Attempt any two:

8

(a) Assuming the expression for energy as

$$E = 9 \text{ NK}_{B} T \left(\frac{T}{\theta_{D}}\right)^{3} \int_{0}^{\frac{\theta_{D}}{T}} \frac{x^{3}}{e^{x} - 1} \cdot dx$$

derive expression for the specific beat at high and low temperature.

P.T.O.

WT (2) BF—105—2016

- (b) Show that packing fraction of BCC lattice is 0.68.
- (c) Describe in brief quantum theory of free electron in a box.
- 4. Attempt any one:

8

- (a) Derive expressons for electrical and thermal conductivities and hence derive Wiedemann-Franz law.
- (b) Obtain an expression for the density of conduction holes in *p*-type semiconductor.
- 5. Write short notes on any two:

8

- (a) Bravais lattices in two dimension
- (b) Limitations of Debye's model of specific heat of solids
- (c) Drude-Lorentz theory
- (d) Difference between conductor, insulator and semiconductor.