This question paper contains 2 printed pages]

R - 89 - 2017

FACULTY OF SCIENCE

B.Sc. (Fifth Semester) EXAMINATION MARCH/APRIL, 2017

PHYSICS.

Paper XII (PHY-302)

(Quantum Mechanics)

(Thursday, 6-4-2017)

Time: 10.00 a.m. to 12.00 noon

Time—Two Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
 - (iii) Given data:

$$h = 6.63 \times 10^{-34} \text{ J.s.}$$

 $m = 9.1 \times 10^{-31} \text{ kg.}$

1. Attempt any four:

8

- (a) Explain DeBroglie's hypothesis of matter waves.
- (b) State uncertainty principle.
- (c) Define wave function.
- (d) Write Schrodinger's equation in time independent form.
- (e) Write wave function of a particle in one-dimensional box.
- (f) Write down an expression for angular momentum of an electron in a hydrogen atom.
- (g) Write an expression for energy and momentum operator.
- 2. Solve any two:

8

- (a) State and explain Compton effect.
- (b) Describe in detail G.P. Thomson's experiment.
- (c) With the help of uncertainty principle, show that electron is absent in the atomic nucleus.

P.T.O.

WT		(2) R—89—201
3.	Solve	any two:
	(a)	Derive an expression for the Schrodinger's equation in time dependen form.
	(<i>b</i>)	Derive an expression for probability current for free particle.
	(c)	Explain eigen value and eigen function.
4.	Solve	any one:
	(a)	Explain Energy quantization and momentum quantisation of a particle in one-dimensional box.
	(<i>b</i>)	Derive an expression for the energy of a particle in three-dimensional box.
5.	Write	short notes on (any two):
	(a)	Separation of variables R, θ and ϕ in H-atom.

(*b*)

(c)

Orbital quantum number.

Magnetic quantum number.