This question paper contains 2 printed pages]

R-107-2017

FACULTY OF SCIENCE

B.Sc. (Third Year) (Fifth Semester) EXAMINATION MARCH/APRIL, 2017

(Old Course)

PHYSICS

Paper XIII

(Solid State Physics)

(Saturday, 8-4-2017)

Time: 10.00 a.m. to 12.00 noon

Time—Two Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) All questions carry equal marks.
- 1. Attempt any four:

8

- (a) Define primitive and non-primitive unit cell-
- (b) Draw the diagrams of four distinct crystal systems in a two-dimensional lattice.
- (c) Define specific heat.
- (d) State Dulong and Petit's law.
- (e) State Wiedemann-Franz relation.
- (f) Enlist any four outstanding properties of metals on the basis Drude-Lorentz theory.
- (g) Define intrinsic and extrinsic semi-conductors.
- 2. Attempt any two:

8

- (a) What are different types of symmetry operations? Show that five fold rotational symmetry as not permissible.
- (b) State the important assumptions of classical theory of specific heat. Derive an enpression for specific heat using classical theory of specific heat.
- (c) Describe Drude-Lorentz theory.

P.T.O.

WT		(2) R—107—201′
3.	Attem	apt any <i>two</i> :
	(a)	Derive an expression for electrical conductivity of metals.
	(<i>b</i>)	Explain the difference between conductors, insulators and semi conductors.
	(c)	Describe the limitations of Debye's model of lattice heat capacity.
4.	Attem	apt any one:

- (a) Derive an expression for the lattice heat capacity of solid using Einstein's model. Discuss the assumptions and predictions of this model and compare with experimental observations.
- (b) Derive an expression for the density of electrons in the conduction band for N-type semiconductor.
- 5. Write short notes on any two:

 (a) Acceptor and donor levels

 (b) Thermal conductivity
 - (d) Three-dimensional Bravais lattices.

Specific heat of solids

(c)