This question paper contains 2 printed pages]

W-96-2018

FACULTY OF SCIENCE

B.Sc. (Third Year) (Fifth Semester) EXAMINATION OCTOBER/NOVEMBER, 2018

(CBCS Pattern)

PHYSICS

Paper XII

(Quantum Mechanics)

(Monday, 22-10-2018)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

N.B. := (i) All questions are compulsory.

- (ii) Figures to the right indicate full marks.
- (iii) All symbols have their usual meanings.
- (iv) Given data:

$$h = 6.63 \times 10^{-34} \text{ J-s}$$

$$m = 9.1 \times 10^{-31}$$
 kg.

1. Attempt any four:

- 8
- (a) Define photo-electric effect and state Einstein's photoelectric equation.
- (b) Calculate de-Broglie wavelength of an electron, when it is accelerated by a P.D. of 64 V.
- (c) Define operator in wave-mechanics.
- (d) Write an equation for energy in case of Hormonic Oscillator.
- (e) Write down an expression for probability current.
- (f) What is total quantum number?

P.T.O.

WT			W—96—2018
2.	Attempt any two:		
	(a)	Describe G.P. Thomson's experiment for the verification waves.	ication of matter
	(<i>b</i>)	Derive Schrodinger's equation in steady state form	
	(c)	Explain Eigen values and Eigen functions.	
3.	Attempt any one:		8
	(a)	Explain Compton effect. Obtain an expression for Codue to scattering of electron by photon.	mpton wavelength
	(<i>b</i>)	Derive the time dependent form of Schrodinger's e	quation.
4.	Attempt any two:		
	(a)	Derive an expression for wave function of a particle in box.	a one-dimensional
	(<i>b</i>)	Explain orbital quantum number in details.	
	(c)	Write a short note on Momentum quantization was a one-dimensional box.	hen particle is in
5.	Attempt any one:		8
	(a)	Derive an expression for energy of a particle in a	three-dimensional

(b)

ordinates and separate the variables.

Derive Schrodinger's equation for Hydrogen atom in spherical polar co-