This question paper contains 2 printed pages]

W-97-2018

FACULTY OF SCIENCE

B.Sc. (Fifth Semester) EXAMINATION

OCTOBER/NOVEMBER, 2018

(CGPA Pattern)

PHYSICS

Paper XII (PHY-302)

(Quantum Mechanics)

(Monday, 22-10-2018)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

N.B. := (i) All questions are compulsory.

- (ii) Figures to the right indicate full marks.
- (iii) Given data:

$$h = 6.63 \times 10^{-34} \text{ J-s}$$

$$m = 9.1 \times 10^{-31}$$
 kg.

1. Attempt any four:

8

- (a) Give an expression for the change in wavelength associated with a photon in Compton scattering.
- (b) State uncertainty principle.
- (c) Write an expression for the energy and momentum operator.
- (d) Give the significance of $|\psi|^2$.
- (e) Write down an expression for energy of a particle in a one-dimensional box.
- (f) Write the wave function of a particle in a three-dimensional box.
- (g) Write an expression for the Schrodinger's equation for hydrogen atom in spherical polar co-ordinates.

P.T.O.

WT		(2) W—97—2018
2.	Solve	any two:
	(a)	Derive an expression for uncertainty principle in terms of position and momentum of a particle.
	(<i>b</i>)	Describe G.P. Thomson's experiment.
	(c)	Calculate the wavelength associated with an electron having momentum 4×10^{-24} kg.m/s.
3.	Attem	pt any <i>two</i> :
	(a)	Derive an expression for the Schrodinger's equation in steady state form.
	(<i>b</i>)	Explain Eigen values and Eigen functions.
	(<i>c</i>)	Derive an expression for energy of a particle in a one-dimensional box.
4.	Attem	pt any <i>one</i> :
	(a)	Derive energy of a particle in a three-dimensional box.
	(<i>b</i>)	Derive an expression for momentum Eigen value and Eigen function for a particle in a one-dimensional box.
5.	Write	short notes on any two:
	(a)	Separation of variables R, θ , ϕ in H-atom.
	(<i>b</i>)	Orbital quantum number
	(c)	Magnetic quantum number.