This question paper contains 2 printed pages]

B-111-2019

FACULTY OF SCIENCE

B.Sc. (Third Year) (Fifth Semester) EXAMINATION MARCH/APRIL, 2019

(CBCS Pattern)

PHYSICS

Paper-XII

(Quantum Mechanics)

(Monday, 1-4-2019)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

N.B. := (i) All questions are compulsory.

- (ii) Figures to the right indicate full marks.
- (iii) All symbols have their usual meanings.
- (iv) Given data:

 $h = 6.63 \times 10^{-34} \text{ J-s}$

 $m = 9.1 \times 10^{-31} \text{ kg}.$

1. Attempt any four:

- 8
- (a) Write Schrodinger's wave equation for H-atom in spherical polar co-ordinates.
- (b) State de-Broglie's hypothesis of matter waves.
- (c) Write a note on principle-Quantum Number.
- (d) State any two applications of Heisenberg's uncertainty principle.
- (e) Write Schrodinger's wave equation in steady state form.
- (f) Write the wave function of a particle in three dimensional box.
- 2. Attempt any two:

8

- (a) On the basis of Heisenberg's uncertainty principle, show that electron is not present in the nucleus.
- (b) Set up Schrodinger's wave equation in time dependent form.
- (c) Write a note on Eigen value and Eigen functions.

P.T.O.

WT	(2)		B-	2111	-20	119
** I	(4	1 20' AY AV . G'		A OT TA		$\mu \nu$

3. Attempt any one:

8

- (a) Discuss the Compton effect. Derive an expression for Compton shift of wave length due to scattering of electron by photon.
- (b) Derive an expression for probability current of a particle moving along x-axis.
- 4. Attempt any *two*:

8

- (a) Explain orbital quantum number.
- (b) Explain momentum quantization of a particle in one dimensional box.
- (c) Derive an expression for wave function of a particle in one-dimensional box.
- 5. Attempt any one:

8

- (a) Derive an expression for energy of a particle in one-dimensional box.
- (b) Starting from Schrodinger's equation for hydrogen-atom in spherical polar co-ordinate system, separate radial, azimuthal and zenith part by method of separation of variables.