This question paper contains 3 printed pages]

### BF-17-2016

#### FACULTY OF SCIENCE

# B.Sc. (Third Year) (Sixth Semester) EXAMINATION OCTOBER/NOVEMBER, 2016

#### **CHEMISTRY**

Paper XIV

(Organic and Inorganic Chemistry)

(Friday, 7-10-2016)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

N.B. := (i) Attempt All questions.

(ii) Figures to the right indicate full marks.

#### Section A

## (Organic Chemistry)

1. Answer any five of the following:

 $5 \times 2 = 10$ 

- (a) Explain  $\pi \to \pi^*$  transition.
- (b) Calculate the  $\lambda_{max}$

(i) 
$$CH_3$$
  $CH_3$   $CH_$ 



(c) Explain Equivalent and Non-equivalent proton.

- (d) Predict the number of PMR signals of:
  - (i) Ethanol
  - (ii) Ethyl-Benzene.
- (e) What are peptides? How are they classified?
- (f) Give the following colour tests of protein:
  - (i) Biuret test
  - (ii) Xanthoprotic test.
- (g) Give the preparation of Glycine by Streckers synthesis. What is the action of nitrous acid on glycine?
- 2. Answer any two of the following:

 $2 \times 5 = 10$ 

- (a) How will you distinguish Ethane, Ethene, Ethyne by using I.R. spectroscopy?
- (b) Explain Fries rearrangement with mechanism.
- (c) How will you synthesize  $\alpha$ -amino acid by Streckers synthesis? What is the action of heat on glycine?
- 3. Answer any *one* of the following:

 $1 \times 7 = 7$ 

- (a) Explain condensation polymerization with suitable example. Give the synthesis of:
  - (i) Polymethyl methacrylate
  - (ii) Glyptol.
- (b) An organic compound with molecular formula  ${\rm C_2H_6O_2}$  gave the following spectral data :

U.V. : Transparent above  $\lambda_{\mbox{\scriptsize max}}$  210 nm.

I.R. :  $3400 \text{ cm}^{-1}$  (Broad),  $2970 \text{ cm}^{-1}$ .

PMR:

( $\delta$  ppm) :  $\delta$  2.5 (S, exchangeable with  $D_2O,~2H)$   $\delta~3.68~(t,~4H)$ 

Deduce the structure of the compound.

#### Section B

# (Inorganic Chemistry)

4. Solve any three of the following:

 $3 \times 3 = 9$ 

- (a) Give the limitation of valence bond theory of co-ordination compound.
- (b) Calculate CFSE value of  $d^4$ ,  $d^6$  and  $d^8$  system in high spin octahedral complexes.
- (c) Explain the effect of nature of ligands on the magnitude of  $\Delta_0$ .
- (d) Discuss in detail the electronic spectrum of  $[Ti(H_2O)_6]^{+3}$  complex ion.
- (e) What is meant by electronic transitions? Give its type.
- 5. solve any *two* of the following:

 $2 \times 2 = 4$ 

- (a) Draw energy level diagram showing splitting of five d-orbitals in tetrahedral and octahedral field.
- (b) Explain inner orbital complexes with suitable example.
- (c) Calculate the number of unpaired electrons in octahedral weak field for  $Co^{+3}$  and  $Fe^{+3}$ .
- (d) Draw Orgel diagram for  $d^1$  and  $d^9$  system.