This question paper contains 3 printed pages]

B-17-2019

FACULTY OF SCIENCE

B.Sc. (Third Year) (Sixth Semester) EXAMINATION

MARCH/APRIL, 2019

(CBCS Pattern)

CHEMISTRY

Paper-XIV-A₁

(Organic and Inorganic Chemistry)

(Saturday, 16-3-2019)

Time—2 Hours

Time : 10.00 a.m. to 12.00 noon

Maximum Marks—40

 $5 \times 2 = 10$

N.B. := (i) Attempt All questions.

(ii) Figures to the right indicate full marks.

Section A

(Organic Chemistry)

1. Answer any *five* of the following :

(a) State and explain Beer's law.

(b) Explain hypochromic and hyperchromic effects.

- (c) Predict the number of PMR signals of :
 - (*i*) Diethyl ether
 - (ii) Acetone.
- (d) Calculate the λ_{max} of :

P.T.O.

 $2 \times 5 = 10$

 $1 \times 7 = 7$

- (e) Explain magnetic and non-magnetic nuclei.
- (f) What are amino acids ? How are they classified ?
- (g) Explain the term Zwitter ion and isoelectric point.

2. Answer any *two* of the following :

- (a) Explain Photofries rearrangement with mechanism.
- (b) Explain use of Dicyclohexyl carbodiimide (DCC) as a reagent for peptide bond formation.
- (c) How will you interpret I.R. spectra of the following compounds :
 - (i) Benzene
 - (ii) Phenol
 - (*iii*) Benzaldehyde.
- 3. Answer any *one* of the following :
 - (a) Deduce the structure and name of the compound having molecular formula C₃H₅N and the following spectral data :
 UV : Transparent above λ_{max} 210 nm
 IR : 2980 cm⁻¹, 2250 cm⁻¹
 PMR(δ_{num}) : δ_{1,1}(t, J = 6 Hz, 3H)

$$\delta_{3.5}(q, J = 7 \text{ Hz}, 2\text{H})$$

- (b) (i) Discuss TMS as a reference and advantages of TMS.
 - (*ii*) Deduce the structure of the compound based on the following PMR spectral data :

Molecular formula : C_2H_6O

PMR(
$$\delta_{ppm}$$
) : $\delta_{1.3}(t, 3H)$
 $\delta_{3.5}(q, 2H)$
 $\delta_{4.7}(s, 1H)$

WΓ

Section **B**

(3)

(Inorganic Chemistry)

- 4. Solve any *three* of the following :
 - (a) What are postulates of valence bond theory of coordination compounds ?
 - (b) State Jahn Teller theorem in octahedral complexes.
 - (c) Calculate CFSE in tetrahedral complexes having d^8 , d^9 and d^{10} configurations.
 - (d) Describe Orgel energy level diagram for d^1 and d^9 configuration.
 - (e) Discuss the types of electronic transitions.
- 5. Solve any *two* of the following :

 $2 \times 2 = 4$

 $3 \times 3 = 9$

- (a) What are the limitations of CFT ?
- (b) Calculate the number of unpaired electrons in the following complexes :
 - (*i*) $[Fe(CN)_6]^{-3}$
 - (*ii*) $[Ni(CN)_6]^{-2}$.
- (c) What are distorted octahedral complexes ?
- (d) Give an account of spectrochemical series.

WΓ

B-17-2019