This question paper contains 3 printed pages]

Y-17-2019

FACULTY OF SCIENCE

B.Sc. (Third Year) (Sixth Semester) (Backlog) EXAMINATION OCTOBER/NOVEMBER, 2019

(CBCS Pattern)

CHEMISTRY

Paper-XIV-A₁

(Organic and Inorganic Chemistry)

(Thursday, 14-11-2019)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

N.B. := (i) Attempt all questions.

(ii) Figures to the right indicate full marks.

Section A

(Organic Chemistry)

1. Answer any five of the following:

 $5\times2=10$

- (a) State and explain Lembert's law.
- (b) Explain $\sigma \to \sigma^*$ and $n \to \sigma^*$ transitions.
- (c) Predict the number of PMR signals of:
 - (i) Methanol
 - (ii) Ethylamine.
- (d) Calculate the λ_{max} of :

P.T.O.

- (e) Define coupling constant and wavelength.
- (f) What are peptides? How are they classified?
- (g) Explain N-terminus and C-terminus protecting agents.
- (h) What are equivalent and non-equivalent protons?
- 2. Answer any two of the following:

 $2 \times 5 = 10$

- (a) Explain Favorskii rearrangement with mechanism.
- (b) How will you distinguish between Ethane, Ethene, Ethyne by using I.R. Spectroscopy?
- (c) Predict the products:

(i)
$$H_2N \cdot CH_2 \cdot COOH + Ba(OH)_2 \xrightarrow{\Delta}$$

(ii)
$$H_2NCH_2COOH + 4[H] \xrightarrow{LiAlH_4}$$

$$(iii) \text{ H}_2\text{NCH}_2\text{COOH} + \text{CH}_3\text{COCl} \xrightarrow{\text{Base}} \Delta$$

$$(iv) \text{ H}_2\text{NCH}_2 \text{ COOH} + \text{HNO}_2$$
 $(\text{Na NO}_2 + \text{HCl})$

$$(iv) H_2N\cdot CH_2\cdot COOH + H-C-H \longrightarrow$$

3. Answer any one of the following:

 $1 \times 7 = 7$

(a) Deduce the structure and name of an organic compound with molecular formula $\rm C_2H_4O_2$ and having the following spectral data :

UV : Transparent λ_{max} 210 nm (E_{max} 50).

$$IR: 3100 - 2975 \text{ cm}^{-1} \text{ (Broad)},$$

$$1715 - 1720 \text{ cm}^{-1}$$
.

PMR (δppm) : $\delta_{2.1}$ (S, 3H)

 $\delta_{11.7}$ (S, 1H) Exchangeable

with D_2O .

- (b) (i) Explain Shielding and deshielding effect with suitable example.
 - (ii) Deduce the structure of compound based on the following PMR spectral data:

Molecular formula : C_2H_5Br

 $PMR(\delta_{ppm}) : \delta_{1.7} (t, 3H)$

 $\delta_{3.4}$ (q, 2H).

Section B

(Inorganic Chemistry)

4. Solve any *three* of the following:

 $3 \times 3 = 9$

- (a) What are outer orbital complexes? Explain with suitable example.
- (b) Define CFSE and calculate CFSE in octahedral complexes having d^4 and d^5 configurations in weak ligand field.
- (c) Explain the following factors affecting the magnitude of crystal field splitting:
 - (i) Nature of the ligands
 - (ii) Oxidation state of the metal ion.
- (d) Calculate the spectroscopic ground state term symbol of d^1 configuration.
- (e) Describe orgel energy level diagram for d^1 and d^9 configuration.
- 5. Solve any *two* of the following:

 $2 \times 2 = 4$

- (a) Draw and explain the shapes of d-orbitals.
- (b) What are the limitations of VBT?
- (c) How size of d-orbitals affect the magnitude of 10Dq?
- (d) Write a note on metal to ligand charge transfer (MLCT).