This question paper contains 3 printed pages]

Y-19-2019

FACULTY OF SCIENCE

B.Sc. (Third Year) (Sixth Semester) (Backlog) EXAMINATION OCTOBER/NOVEMBER, 2019

(CGPA Pattern)

CHEMISTRY

Paper-XIV

(Organic and Inorganic Chemistry)

(Thursday, 14-11-2019)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

N.B. := (i) Attempt all questions.

(ii) Figures to the right indicate full marks.

Section A

(Organic Chemistry)

1. Answer any five of the following:

 $5 \times 2 = 10$

- (a) Explain $\Pi \to \Pi^*$ transitions.
- (b) Calculate the λ_{max} :

(i)
$$CH_3$$
— $C = CH - C - CH_3$
 CH_3 O

$$\begin{array}{ccc} \mathrm{CH_3} & \mathrm{CH_3} \\ & & | & | \\ \mathrm{(\emph{ii})} \ \mathrm{CH_2} = & \mathrm{C} \ - \ \mathrm{C} \ = \mathrm{CH_2} \end{array}$$

- (c) Explain deshielding of a proton with an example.
- (d) Predict the number of PMR signals of:
 - (i) Acetone
 - (ii) Cyclobutane.

P.T.O.

- (e) What is the action of formaldehyde and acetaldehyde on glycine.
- (f) Give the following colour test of protein:
 - (i) Biuret test
 - (ii) Xanthoprotic test.
- (g) What are peptides? How are they classified?
- 2. Answer any *two* of the following §

 $2 \times 5 = 10$

- (a) How will you interpret IR spectra of the following compounds:
 - (i) Phenol
 - (ii) Acetone
 - (iii) Ethyne.
- (b) Explain Fries rearrangement with mechanism.
- (c) How will you synthesis α -amino acid by Gabriel's phthaliamide synthesis? What is the action of nitrous acid on glycine?
- 3. Answer any one of the following:

 $1 \times 7 = 7$

- (a) Discuss the anionic addition polymerisation with mechanism. Give the synthesis and uses of:
 - (i) Bakelite
 - (ii) Polymethyl methacrylate.
- (b) An organic compound with molecular formula C_3H_8O gave the following spectral data :

UV : Transparent above $\lambda_{max}\ 210\ nm$

 $IR: 3400 \text{ (Broad)}, 2890, 1050 \text{ cm}^{-1}$

PMR (δ PPM) : δ 1.2 (t, J = 7.5 Hz, 3H)

 δ 2.6 (Sextet, J = 7.5 Hz, 2H)

 δ 3.5 (t, J = 7.5 Hz, 2H)

 δ 4.5 (S, 1H, exchangeable with D₂O)

Deduce the structure of the compound.

Section B

(Inorganic Chemistry)

4. Solve any *three* of the following :

 $3 \times 3 = 9$

- (a) Explain outer orbital complex of coordination number six with example.
- (b) Give the postulates of crystal field theory.
- (c) Define CFSE ? Calculate CFSE of d^6 configuration in high spin octahedral complex.
- (d) What are selection rules for electronic spectra?
- (e) Calculate the spectroscopic ground state term symbol of d⁴ configuration.
- 5. Solve any *two* of the following:

 $2\times2=4$

- (a) Give the limitation of valence bond theory.
- (b) Explain the effect of oxidation state of metal ion on magnitude of crystal field splitting.
- (c) Calculate the number of unpaired electrons in octahedral complex of Co³⁺ and Fe³⁺, in strong field ligand.
- (d) Draw Orgel diagram for d^1 and d^9 system.