This question paper contains 3 printed pages]

BF-44-2016

FACULTY OF ARTS/SCIENCE

B.A./B.Sc. (Third Year) (Sixth Semester) EXAMINATION OCTOBER/NOVEMBER, 2016

(Revised Course)

MATHEMATICS

Paper XVI (MT-304)

(Numerical Analysis)

(Friday, 14-10-2016)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

N.B. := (i) All questions are compulsory.

- (ii) Figures to the right indicate full marks.
- (iii) Use of non-programmable calculator is allowed.
- 1. Attempt any five of the following:

2 each

(a) Prove that:

$$\Delta[f(x) \ + \ g(x) \ + \ \dots] \ = \ \Delta f(x) \ + \ \Delta g(x) \ + \ \dots \dots$$

- (b) Define factorial function.
- (c) Prove that:

$$\mu = cosh \frac{U}{2}.$$

- (d) Construct the divided difference table with arguments 2, 4, 9 for the function $f(x) = x^3 2x$.
- (e) State Simpson's $\frac{1}{3}$ rd rule as approximate quadrature formula.
- (f) Define numerical differentiation.

2. Attempt any two of the following:

5 each

(a) Prove that Newton-Gregory formula for forward interpolation using polynomial in x of degree n:

- (b) Prove that:
 - (i) $\Delta^p \Delta^q f(x) = \Delta^{p+q} f(x)$
 - (ii) $E\Delta = \Delta E$.
- (c) Given:

$$\log_{10} 100 = 2$$
, $\log_{10} 101 = 2.0043$,
 $\log_{10} 103 = 2.0128$, $\log_{10} 104 = 2.0170$.

Find:

 $\log_{10} 102.$

3. Attempt any two of the following:

5 each

- (a) Prove that the Stirling's interpolation formula for equal intervals.
- (b) Use Bessel's formula to find Y_{25} , given $Y_{20} = 2854$, $Y_{24} = 3162$, $Y_{28} = 3544$, $Y_{32} = 3992$.
- (c) Find a polynomial satisfied by (-4, 1245), (-1, 33), (0, 5), (2, 9) and (5, 1335).
- 4. Attempt any two of the following:

5 each

(a) Prove the Simpson's $\frac{3}{8}$ rule as approximate quadrature formula.

(b) Evaluate integral $\int_{0}^{6} f(x)dx$ using Simpson's $\frac{1}{3}$ rd rule. Given:

x	f(x)
0	6.9897
1	7.4036
2	7.7815
3	8.1291
4	8.4510
5	8.7506
6	9.0309

(c) Using Euler's modified method, obtain solution of the equation:

$$\frac{dy}{dx} = x + \left| \sqrt{y} \right| = f\left(x, y\right)$$

with boundary condition y=1 at x=0 for the range $0 \le x \le 0.6$ in the steps of 0.2. (upto first, second, third approximations to y_1).