This question paper contains 4 printed pages]

BF-68/69-2016

FACULTY OF ARTS/SCIENCE

B.A./B.Sc. (Third Year) (Sixth Semester) EXAMINATION OCTOBER/NOVEMBER, 2016

MATHEMATICS

Paper XVIII (A)

(Topology)

Or

Paper XVIII (306-B)

[Mechanics—II (Dynamics)]

(Wednesday, 19-10-2016)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

Paper XVIII (A)

(Topology)

N.B. := (i) All questions are compulsory.

- (ii) Figures to the right indicate full marks.
- 1. Attempt any five of the following:

2 each

- (a) Define countably infinite set.
- (b) State the well-ordering theorem.
- (c) Define topological space.
- (d) Define the order topology.
- (e) Define closure of a set.
- (f) Define compact space.
- 2. Attempt any two of the following:

5 each

(a) Let X be a set; let **B** be a basis for a topology τ on X. Then prove that τ equals the collection of all unions of elements of **B**.

P.T.O.

- (b) Let X be a set, τ_f be a collection of all subsets U of X such that X U either is finite or is all of X. Then show that τ_f is a topology on X.
- (c) Prove that the lower limit topology τ' on R is strictly finer than the standard topology τ .
- 3. Attempt any *two* of the following:

5 each

(a) If **B** is a basis for the topology of X, then prove that the collection:

$$\mathbf{B}_{\mathbf{V}} = \{\mathbf{B} \, \cap \, \mathbf{Y} \, | \, \mathbf{B} \in \, \mathbf{B} \}$$

is a basis for the subspace topology on Y.

(b) If **B** is a basis for the topology of X, and **C** is a basis for the topology of Y, then the collection

$$D = \{B \times C \mid B \in B, C \in C\}$$

is a basis for the topology of XXY.

- (c) Let Y = [0, 1] be a subset of real line R, show that Y is a subspace topology of R.
- 4. Attempt any two of the following:

5 each

- (a) Let Y be a subspace of X. Then prove that a set A is closed in Y if and only if it equals the intersection of a closed subset of X with Y.
- (b) If the sets C and D form a separation of X, and if Y is a connected subset of X, then prove that Y lies entirely within C or D.
- (c) Let A and B are subsets of X. Show that:

$$\overline{A \cap B} = \overline{A} \cap \overline{B}$$
.

OR

Paper XVIII (306-B)

[Mechanics—II (Dynamics)]

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
- 1. Attempt any *five* of the following:

2 each

- (a) Define Acceleration.
- (b) Write the components of velocity and acceleration along rectangular Cartesian axes.
- (c) Define moment of momentum.
- (d) Write the unit of power in C.G.S. system and M.K.S. system.
- (e) Define Horizontal range of projectile.
- (f) Define trajectory.
- 2. Attempt any two of the following:

5 each

- (a) Explain angular speed and angular velocity.
- (b) Find the radial and transverse components of acceleration.
- (c) Prove that if the tangential and normal accelerations of a particle describing a plane curve be constant throughout the motion, the angle ψ through which the direction of motion turns in time t is given by :

$$\Psi = A \log(1 + Bt).$$

3. Attempt any two of the following:

5 each

(a) Prove that the principle of conservation of linear momentum.

P.T.O.

- (b) Prove that in a conservative field of force, the sum of kinetic energy and potential energy of a particle at every point, is constant.
- (c) Find the work done by the force

$$\overrightarrow{F} = 2xi + 2yj$$

in moving a particle from P(1, 2) to Q(3, 2).

4. Attempt any two of the following:

5 each

- (a) Find the vertex and the latus rectum of the parabola.
- (b) Prove that the relation:

$$t_1.t_2 = \frac{2R}{g}.$$

(c) T is the time of flight of a bullet when the horizontal range is R. Prove that the inclination of the direction of projection with the horizontal is:

$$\tan^{-1}\left[\frac{gT^2}{2R}\right].$$

WT (5) BF—68/69—2016