This question paper contains 2 printed pages]

## R-54-2017

## **FACULTY OF SCIENCE**

## B.Sc. (Third Year) (Sixth Semester) EXAMINATION MARCH / APRIL, 2017

**MATHEMATICS** 

PAPER XVII (MT-305) (Old)

(Partial Differential Equations)

(Thursday, 30-03-2017)

Time: 10:00 am to 12:00 noon

Maximum Marks-40

Time-2 Hours

N.B.: -

(i) All questions are compulsory.

(ii) Each question carries equal marks.

1. Answer *any five* of the following:

10

- (i) How is method of multipliers used for solving linear partial differential equations of first order?
- (ii) State the first order partial differential equation of standard form type II.
- (iii) Define linear homogeneous partial differential equation of  $n^{th}$  order with constant coefficients.
- (iv) State the rule for finding the particular integral of partial differential equation  $f(D, D')z = e^{ax+by}$ .
- (v) State the wave equation.
- (vi) Write down the Laplace equation in polar co-ordinates.
- 2. Answer *any two* of the following:

10

- (a) Explain in detail the method of solving Lagrange's equation.
- (b) Form a partial differential equation by eliminating arbitrary function f from the equation  $z = f(x^2 y^2)$ .
- (c) Solve  $p x^2 = q + y^2$ .
- 3. Answer *any two* of the following:

10

- (a) Explain Monge's method for solving non-linear partial differential equation of second order.
- (b) Solve  $\frac{\partial^2 z}{\partial x^2} + 4 \frac{\partial^2 z}{\partial x \partial y} 5 \frac{\partial^2 z}{\partial y^2} = 0$ .
- (c) Solve  $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} = x y$ .
- 4. Answer *any two* of the following :

10

(a) Obtain the solution of wave equation by D'Almbert's method.

P.T.O.

1

- (b) Using method of separation of variables, solve  $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ , where  $u(x, 0) = 6e^{-3x}$ .
- (c) Solve  $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ , satisfying the conditions u(0, y) = u(l, y) = u(x, 0) = 0.