This question paper contains 2 printed pages]

R-70-2017

FACULTY OF ARTS/SCIENCE

B.A./B.Sc. (Third Year) (Sixth Semester) EXAMINATION MARCH/APRIL, 2017

MATHEMATICS

Paper XVIII

[Mechanics—II (Dynamics)]

(Saturday, 1-4-2017)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
- 1. Attempt any five of the following:

2 each

- (a) Define radial and transverse direction.
- (b) Define Angular velocity.
- (c) Define Linear momentum.
- (d) Write the units of work in M.K.S. and F.P.S. systems.
- (e) Define velocity of projection.
- (f) Define Horizontal range of projectile.
- 2. Attempt any two of the following:

5 each

- (a) Explain tangent and unit vector along the tangent at given point.
- (b) Find tangential and normal components of acceleration.
- (c) A point describes the equiangular spiral $r = ae^{\theta}$ with constant angular speed w about 0, 0 being the pole. Find the radial and transverse components of acceleration.

P.T.O.

- 3. Attempt any two of the following:
 - (a) Prove that the principle of angular momentum.
 - (b) Prove that the kinetic energy of particle of mass m moving with velocity $\stackrel{\rightarrow}{v}$ is $\frac{1}{2}mv^2$.
 - (c) A particle of mass 0.1 lb has the velocity 2i+3j ft/sec. at t=2 sec. It is subjected to a force $3t^2i+\cos(\pi t)j$. Find the impulse of the force over the interval $2 \le t \le 3$. Also find the velocity at t=3 sec.

5 each

- 4. Attempt any *two* of the following:
 - (a) Find the vertex and the latus rectum of the parabola.
 - (b) Prove that Range on an inclined plane is:

$$\frac{u^2 \left[\sin\left(2\alpha - \beta\right) - \sin\beta\right]}{g\cos^2\beta}.$$

(c) If the greatest heights attained by two particles are h_1 and h_2 , then prove that the angle of projection is given by :

$$\alpha = \tan^{-1} \left[\sqrt{\frac{h_1}{h_2}} \right].$$

And also prove that $u^2/4g$ is the arithmetic mean between h_1 and h_2 and R/4 is the geometric mean between them, where R is the horizontal range.