This question paper contains 2 printed pages]

V-66-2017

FACULTY OF ARTS/SCIENCE

B.A./B.Sc. (Third Year) (Sixth Semester) EXAMINATION OCTOBER/NOVEMBER, 2017

MATHEMATICS

Paper-XVIII (A)

(Topology)

(Saturday, 11-11-2017)

Time : 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
- 1. Attempt any *five* of the following:

2 each

- (a) Define restriction mapping
- (b) Define equivalence relation
- (c) Define projection mapping
- (d) Define Limit point of a set
- (e) Define Topological space
- (f) Define separation.
- 2. Attempt any two of the following:

5 each

- (a) Let X be a set, let \mathbf{B} be a basis for a topology \mathbf{T} on X. Then prove that \mathbf{T} equals the collection of all unions of elements of \mathbf{B} .
- Define lower limit topology also prove that the lower limit topology T' on R is strictly finer than the standard topology.
- (c) If:

 $X = \{a, b, c\}$ let $\mathbf{T}_1 = \{\phi, X, \{a\} \{a,b\}\}$ and $\mathbf{T}_2 = \{\phi, X \{a\} \{b,c\}\}$ then find the smallest topology containing \mathbf{T}_1 and \mathbf{T}_2 and the largest topology contained in \mathbf{T}_1 and \mathbf{T}_2 .

P.T.O.

3. Attempt any *two* of the following:

5 each

- (a) Prove that, if A is a subspace of X and B is a subspace of Y, then the product topology on $A \times B$ is the same as the topology $A \times B$ inherits as a subspace of $X \times Y$.
- (b) If **B** is a basis for the topology of X, then prove that the collection $\mathbf{B}_{V} = \{B \cap Y \mid B \in \mathbf{B}\} \text{ is a basis}$

for the subspace topology on Y.

(c) Consider Y be the subset of R, given by

$$Y = [0.1) \cup \{2\}$$

then show that {2} is open in Y when Y is a subspace topology but not open when Y is order topological space.

4. Attempt any two of the following:

5 each

- (a) Prove that, let Y be a subspace of X. Then a set A is closed in Y if and only if it equals the intersection of a closed set of X with Y.
- (b) Let X and Y be topological spaces: Let $f: X \to Y$. Then prove that the following are equivalent:
 - (i) f is continuous.
 - (ii) For every subset A of X, one has $f(\overline{A}) \subset \overline{f(A)}$
 - (iii) For every closed set B in Y, the set f^{-1} (B) is closed in X.
- (c) Let $A \subset X$ and $B \subset Y$, then show that in the space $X \times Y$,

$$\overline{\mathbf{A} \times \mathbf{B}} = \overline{\mathbf{A}} \times \overline{\mathbf{B}}$$
.