This question paper contains 3 printed pages]

W-44-2018

FACULTY OF ARTS/SCIENCE

B.A./B.Sc. (Third Year) (Sixth Semester) EXAMINATION OCTOBER/NOVEMBER, 2018

MATHEMATICS

Paper XVI (MT-304)

(Numerical Analysis)

(Friday, 12-10-2018)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

N.B. := (i) All questions are compulsory.

- (ii) Figures to the right indicate full marks.
- (iii) Use of Non-scientific/Non-programmable calculator is allowed.
- 1. Attempt any five of the following:

2 each

(i) If:

$$f(x) = ax^n + bx^{n-1} + cx^{n-2} + ... + kx + 1$$

find $\Delta f(x)$.

(ii) Prove that:

$$\mathbf{E}^2 = (1 + \Delta)^2.$$

- (iii) Define central difference operator δ and mean operator μ .
- (*iv*) Prove that:

$$\delta = \Delta \, \mathbf{E}^{-\frac{1}{2}} \, .$$

- (v) State general quadrature formula for equidistant ordinate.
- (vi) State Weddel's rule as approximate quadrature formula.
- 2. Attempt any two of the following:

5 each

(i) Prove that the *n*th divided difference of a polynomial of the *n*th degree are constant.

P.T.O.

(ii) Construct a difference table from the following values of x and y:

X	
3.0	.33333
3.1	.32258
3.2	.31250
3.3	.30303
3.4	.29412

(iii) From the following table, find the number of students who obtained less than 45 marks:

Marks	No. of Students
30—40	31
40—50	42
50—60	51
60—70	35
70—80	31

3. Attempt any two of the following:

5 each

- (i) Prove that Bessel's Interpolation formula for equal intervals.
- (*ii*) Given $\log_{10}^{654} = 2.8156$, $\log_{10}^{658} = 2.8182$, $\log_{10}^{659} = 2.8189$, $\log_{10}^{661} = 2.8202$. Find \log_{10}^{656} .
- (iii) Use Stirling's formula to find y_{35} given $y_{20} = 512$, $y_{30} = 439$, $y_{40} = 346$, $y_{50} = 243$.
- 4. Attempt any two of the following:

5 each

- (1) Prove the Simpson's $\frac{3}{8}$ th rule as approximate quadrature formula.
- (*ii*) Calculate approximate value of $\int_0^{\frac{1}{2}\pi} \sin x dx$, by using Trapezoidal rule.

Given:

$$\sin 0 = 0$$
, $\sin \pi/20 = 0.1564$,
 $\sin \pi/10 = 0.3090$, $\sin 3\pi/20 = 0.4540$,

$$\sin \pi/5 = 0.5878$$
, $\sin \pi/4 = 0.7071$,
 $\sin 3\pi/10 = 0.8090$, $\sin \frac{7\pi}{20} = 0.8910$,
 $\sin 2\pi/5 = 0.9511$, $\sin \frac{9\pi}{20} = 0.9877$,
 $\sin \pi/2 = 1.0000$.

(iii) Using Euler's modified method, obtain solution of the equation:

$$\frac{dy}{dx} = x + |\sqrt{y}| = f(x, y)$$

with boundary condition y = 1 at x = 0 for the range $0 \le x \le 0.6$ in the steps of 0.2 (upto first, second, third approximations to y_1).