This question paper contains 2 printed pages]

AO-89-2018

FACULTY OF SCIENCE

B.Sc. (Sixth Semester) EXAMINATION MARCH/APRIL, 2018

(New Course)

PHYSICS

Paper XV (A) (Phy.-305)

(Digital and Communication Electronics)

(Monday, 2-4-2018)

Time: 10.00 a.m. to 12.00 noon

 $\mathit{Time}{-2}\ \mathit{Hours}$

Maximum Marks—40

N.B. :— (i) All questions are compulsory.

- (ii) All questions carry equal marks.
- 1. Attempt any four

8

- (a) Define frequency modulation.
- (b) Give truth table of NOR-gate.
- (c) State OR law.
- (d) Define decimal number system.
- (e) Give statement of deviation ratio.
- (f) Define fidelity of a radio receiver.
- (g) Explain position weighted number system.
- (h) Define base band signal.
- 2. Attempt any two:

8

(a) Perform the following conversions:

$$(654)_8 = (?)_2$$

 $(598)_{10} = (?)_2$
 $(1AC)_{16} = (?)_2$
 $(1111)_8 = (?)_{10}$

- (b) State and explain De-Morgan's theorems.
- (c) Obtain an expression for F.M. voltage.

P.T.O.

WT (2	2) AO—89—20)18
--------	--------------	-----

3. Attempt any two:

8

- (a) Draw symbols of two input EX-OR and EX-NOR gates. Write their truth tables.
- (b) Explain in detail gray code.
- (c) Draw block diagram of basic communication system. Explain each block.
- 4. Attempt any *one*:

8

- (a) Give types of modulation. Derive an expression for A.M. voltage.
- (b) Define demodulation. Explain working of super heterodyne receiver with neat labelled diagram.
- 5. Write short notes on (any two):

8

- (a) Hexadecimal number system
- (b) Double dabble method for decimal to binary conversion
- (c) 8421 BCD code
- (d) Logical expression for EX-NOR gate.