This question paper contains 2 printed pages]

W-103-2018

FACULTY OF SCIENCE

B.Sc. (Sixth Semester) EXAMINATION OCTOBER/NOVEMBER, 2018

(New Course)

PHYSICS

Paper XV-A (PHY-305)

(Digital and Communication Electronics)

(Tuesday, 23-10-2018)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

N.B. :— (i) All questions are compulsory.

- (ii) Figures to the right indicate full marks.
- 1. Attempt any four:

8

- (a) State associative law.
- (b) Convert the binary numbers $(11011)_2$ and $(101010)_2$ to equivalent gray code.
- (c) Draw logic symbol and truth table for Ex-OR gate.
- (d) Define base band signal and base band transmission.
- (e) Define amplitude modulation.
- (f) Define modulation index and deviation ratio for FM.
- (g) Convert hexadecimal number A85 to a decimal number.
- (h) Explain the function of RF section of a superheterodyne receiver.
- 2. Attempt any two:

8

- (a) Convert the following hexadecimal numbers to their octal equivalent:
 - (i) 0.48
 - (*ii*) BC-8A
- (b) Describe power output in AM wave.
- (c) Apply DeMorgan's theorem to the expression $(\overline{\overline{A} + B}) + \overline{\overline{CD}}$.

P.T.O.

WT (2) W-103-2018

3. Attempt any two:

8

- (a) Explain Excess-3 code.
- (b) Explain TRF receiver.
- (c) Define and explain types of modulation.
- 4. Attempt any *one*:

8

- (a) What is the importance of radio receiver? Explain in detail.
- (b) Draw neat labelled circuit diagram for linear diode AM detector. Explain the operation of a diode as demodulator for AM.
- 5. Attempt any two:

8

- (a) Discuss wave forms of amplitude modulated voltage.
- (b) State and explain commutative law for Boolean addition and multiplication for three varibales A, B and C. Represent it with logic gates.
- (c) Perform the following conversions:
 - (i) $(654)_8 = (?)_2$
 - (ii) $(10101)_2 = (?)_{10}$
 - (iii) $(598)_{10} = (?)_2$
 - (iv) $(A5D)_{16} = (?)_2$
- (d) Solve the following:
 - (i) $(1101)_2 + (1011)_2$
 - (ii) $(1011)_2 + (1001)_2$
 - (iii) $(111)_2 + (101)_2 + (100)_2$
 - (iv) $(1101)_2 + (1001)_2 + (1000)_2$