This question paper contains 2 printed pages]

W—89—2018

FACULTY OF SCIENCE

B.Sc. (Sixth Semester) EXAMINATION OCTOBER/NOVEMBER, 2018

PHYSICS

Paper XIV (PHY-304)

(Atomic Molecular and Nuclear Physics)

(Saturday, 20-10-2018)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

N.B. := (i) All questions are compulsory.

- (ii) Figures to the right indicate full marks.
- (iii) Symbols have their usual meaning.
- 1. Solve any four:

8

- (a) Give the expression for the reduced mass '\u03c4' of a diatomic molecule.
- (b) Which regions lie below visible region in an electromagnetic spectrum when it is plotted in the increasing order of their wavelength.
- (c) Write down the expression for the frequency of a rotational line in a diatomic spectra.
- (d) When do we say that a nuclear reactor is critical?
- (e) What is nuclear fission?
- (f) State four factor formula used in designing a reactor.
- 2. (a) Explain the quantum numbers associated with vector atom model. 8
 - (b) Explain the intensity rules of the lines occurring in an atomic spectra.

Or

- (x) Explain in detail L-S and J-J coupling schemes.
- (y) Explain normal and anomalous Zeeman effect.

P.T.O.

WT		(2) W—89—20	13
3.	(a)	In case of the rotational spectrum of a diatomic molecules, show the	ıa
		the rotational lines are equally spaced.	3
	(<i>b</i>)	Explain Stark effect and its experimental setup.	
		Or	5 6
	(<i>x</i>)	Give the theory of rotation vibration spectra of a diatomic molecu	le
	(y)	Explain Raman effect and comment on the occurrence of Stokes' a antistokes lines.	no
4.	Deriv	ve Q value equation in nuclear reaction kinematics.	ک' 8
	Expla	ain various types of nuclear reactions.	
5.	Write	e notes on (any <i>two</i>):	8
	(a)	Conservation laws in nuclear reactions	
	(<i>b</i>)	Nuclear Fission as a source of energy	

Selection rules for the lines occurring in an atomic spectra.

Experimental setup of Raman effect

(c)

(d)