This question paper contains 4 printed pages]

BR-229-2016

FACULTY OF SCIENCE

M.Sc. (First Year) (First Semester) EXAMINATION NOVEMBER/DECEMBER, 2016

(CBCS Course)

CHEMISTRY

Paper III (CH-413)

(Physical Chemistry—I)

(Monday, 21-11-2016)

Time: 10.00 a.m. to 1.00 p.m.

Time—Three Hours

Maximum Marks—75

- N.B. := (i) Attempt All questions.
 - (ii) Use of log table and calculator is allowed.
 - (iii) Solve Question No. 5 (A) MCQ in one attempt only.

Given : (1) $h = 6.626 \times 10^{-34} \text{ Js.}$

- (2) Mass of an electron, $m_e = 9.109 \times 10^{-31}$ kg.
- (3) Velocity of ligth, $c = 3 \times 10^8 \text{ ms}^{-1}$.
- (4) Gas constant, R = 8.314 J/K/mole.
- (5) Avogadro's number, $N = 6.022 \times 10^{23}$ molecules
- (6) Boltzmann constant, $k = 1.38 \times 10^{-23}$ J/K
- 1. Solve any three:

15

- (a) Explain Spin-Orbit coupling with reference to multiplet structure of sodium-D line.
- (b) Explain by quantum mechanical approach: 'No two electrons are in the same quantum state'.
- (c) Explain a three-component system involving three pairs of partially miscible liquids with a suitable phase diagram.

P.T.O.

- (d) Calculate the ionic strength of:
 - (i) 0.01 M aluminium sulphate
 - (ii) A solution of (0.1 M NaCl + 0.02 M BaCl₂).
- (e) State and explain Mitscherlich's law of isomorphism.
- 2. Attempt any three:

15

(a) Prove that:

$$\begin{bmatrix} \hat{\mathbf{S}}^2, \ \hat{\mathbf{S}}_x \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{S}}^2, \ \hat{\mathbf{S}}_y \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{S}}^2, \ \hat{\mathbf{S}}_z \end{bmatrix} = \mathbf{0}.$$

- (b) Draw a phase diagram for the eutectic systems containing three components. Explain it.
- (c) Define a partition function and derive an expression for translational partition function.
- (d) Explain octahedral and tetrahedral voids in close packed structure of solids.
- (e) Derive Lipmann equations of surface excess phenomenon.
- 3. Solve the following:
 - (a) State the Schrödinger's wave equation in terms of Hamiltonian form and describe its application to a system of linear harmonic oscillators.

Or

Describe a first-order and non-degenerate perturbation theory for the system of H-atom.

(b) What is the wavelength of light absorbed when an electron in a linear molecule 10 Å long make a transition from ground to first excited state?

Or

Set up and solve the Schrödinger wave equation to a particle in threedimensional box problem and calculate degeneracies for it when energy equal to 9 and 14 in the units of $h^2/8$ ml².

- 4. Solve the following:
 - (a) What is activity and activity coefficient? Describe Debye's Hückel theory for activity coefficient of electrolytic solutions.

Or

What is meant by fugacity of a gas? Explain the graphical method of its determination.

(b) The rotational partition constant B of HCl(g) determined by microwave spectroscopy is 10.59 cm⁻¹. Calculate rotational partition function of HCl at 100 K temperature.

(Symmetry number for HCl = 1).

Or

What are Extensive properties? Explain chemical potential and partial molar heat content with their significance.

- 5. (A) Select the correct alternatives:
 - (i) In case of Lader operators which of the following communications are true:
 - (1) $[L_z, L_+] = \pm \hbar L_+$
 - $(2) \qquad [L_z, \ L_{\pm}] = 2 \hbar \ L_z$
 - (3) $[L_z, L_{\pm}] = i\hbar L_y$
 - (4) $[L_z, L_{\pm}] = i\hbar L_x$
 - (a) Only (1)
 - (b) Only (2)
 - (c) (1), (2) and (3)
 - (d) (1), (2), (3) and (4)

P.T.O.

5

WT				(4)		BR—229—2016	
		(ii)	In three-component systems Tie-lines are not used in the region of				
				41			
				three-phases		two-phases	
			(c)	one-phase	(d)	both (a) and (c)	
		(iii)	In micro-canonical ensemble, the contants are				
			(a)	E, V, N	(b)	T, V, N	
			(c)	T. V, µ	(d)	None of these	
		(iv)	Lattice energy and dissociation energy for the ionic crystals are of with				
			(a) Same magnitude only				
			(b) Same magnitude but opposite in sign				
			(c) Opposite in sign only				
			(d)	None of the above			
		(v)	For a solution of strong electrolyte, higher the frequency of alternating current, higher the conductance is known as				
	80 B		(a) Debye-Hückel theory of strong electrolytes				
			(b) Onsager effect				
			(c) Debye-Falkenhagen effect				
			(d)	Wien effect			
	(B)	\mathbf{Write}	\mathbf{short}	notes on any two:		10	
		(a)	Helmholtz-Perrin theory of electrical double layer				
		(<i>b</i>)	Wien effect				
		(c)	Two-solid and one-liquid component systems: formation of binary compounds, one double salt formation				
		(d)	Orthogonality and normalisation of wave functions.				
P.R	220 2	016		4			