This question paper contains 4 printed pages]

AI-11-2017

FACULTY OF SCIENCE

M.Sc. (First Year) (First Semester) EXAMINATION MARCH/APRIL, 2017

(CBCS Pattern)

CHEMISTRY

Paper I (CH-411)

(Inorganic Chemistry)

(Thursday, 20-4-2017)

Time: 10.00 a.m. to 1.00 p.m.

Time—Three Hours

Maximum Marks—75

- N.B. := (i) Attempt All questions.
 - (ii) Use of calculator is allowed.
 - (iii) Figures to the right indicate full marks.
 - (iv) Solve MCQs once only.
- 1. Solve any three out of five :

15

- (a) What is S_N^2 mechanism ? Give the characteristics of S_N^2 mechanism in complexes.
- (b) Explain anation reaction with suitable example.
- (c) Explain 'Co ligand acts as π -acceptor ligand.'
- (d) Explain dinitrogen complexes with suitable examples.
- (e) Calculate number of microstates for p^1 and d^8 configurations.
- 2. Attempt any three out of five :

15

- (a) Explain oxidative addition reaction with suitable example.
- (b) Determine term symbol for state where L = 2 and S = 1/2.
- (c) What are the rules for determining ground state term symbols.
- (d) Explain outer sphere mechanism of electron transfer reaction with suitable examples.

P.T.O.

(e) Explain the following order of rate of aquation of complexes on the basis of solvent effect:

 $[Co(NH_3)_5Cl]^{2+} > [Co(en)(NH_3)_3Cl]^{2+} > [Co(en)_2[NH_3)Cl]^{2+}.$

3. (a) Explain metal-metal bonding in metal cluster with suitable examples.

Or

Explain the following properties of Ferrocene:

- (i) Carboxylation
- (ii) Friedel-Crafts alkylation
- (iii) Vilsmeir reaction.
- (b) Draw and explain Tanabe-Sugano diagram for d^3 configuration. 7

Or

Find out number of unpaired electrons and magnetic moment of the following ions:

- (i) [CuCl₄]²⁻
- (ii) $[CoF_6]^{3-}$.
- 4. (a) What is base hydrolysis? Explain the importance of conjugate base formation in base hydrolysis with suitable examples.

Or

- (a) Explain mechanism of acid hydrolysis when the inert ligand is π -donor.
- (b) How will you prepare metal clusters by :

--l- ----l -

7

- (i) Thermal expulsion of Co from a metal carbonyls.
- (ii) Condensation method.

Or

What is difference between Orgel and T-S diagram.

WT				(3)	AI—11—2017		
5.	(A)	Select the correct alternative from the following:					
		(i)	Number of microstates for p^2 configuration is				
			(a)	10			
			<i>(b)</i>	20			
			(c)	18			
			(d)	15			
		(ii)	Mulliken spectroscopic term symbol for S in octahedral field is				
			•••••				
			(a)	A_{1g}			
			(b)	$T_{1 m g}$,		
			(c)	T_{2g}			
		250	(d)				
		(iii)	Ni (CO) ₄ is				
			(a)	Diamagnetic			
			(b)	Paramagnetic			
			(c)	Ferromagnetic			
			(d)	Antiferromagnetic			
		(iv)	Find out π -acceptor ligand from the following :				
		25 25 25 25 25 25 25 25 25 25 25 25 25 2	(a)	$ m H_2O$			
	200 VX		(<i>b</i>)	$ m NH_3$			
	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	O VIE	(c)	CO			
		25.20°	(<i>d</i>)	Ethylenediamine			
p, C	0,600	2000	3,30.Vx				

P.T.O.

WT	(4)) AI—11—2017

- (v) Rate of electron transfer through inner sphere mechanism increases if:
 - (a) Nucleophilic character of bridging ligand increases.
 - (b) Electrophilic character of bridging ligand increases.
 - (c) Bridging ligand is π -acceptor
 - (d) Both (a) and (c)
- (B) Write short notes on any two:

10

- (a) Complementary electron transfer reactions
- (b) Spin-cross over
- (c) 16-electron rule.

AI-11-2017