This question paper contains 4 printed pages]

AI—11—2017

FACULTY OF SCIENCE

M.Sc. (First Year) (First Semester) EXAMINATION OCTOBER/NOVEMBER, 2017

(CBCS Pattern)

CHEMISTRY

Paper (CH-411)

(Inorganic Chemistry—I)

(Friday, 10-11-2017)

Time: 10.00 a.m. to 1.00 p.m.

Time—3 Hours

Maximum Marks—75

- N.B. := (i) Attempt All questions.
 - (ii) Use of calculator is allowed.
 - (iii) Figures to the right indicate full marks.
 - (iv) Solve MCQ ones only.
- 1. Solve any three out of five:

15

- (a) What is C.F.A.E. ? Explain the relationship of C.F.A.E. with lability and inertness of the complexes.
- (b) What is acid hydrolysis? Explain effect of solvation of complexes on the rate of acid hydrolysis.
- (c) Explain structure and bonding in ferrocene on the basis of V.B.T.
- (d) Explain reductive elimination reaction with suitable examples.
- (e) Calculate the number of microstate for P^4 and d^3 configurations.
- 2. Solve any three out of five:

15

(a) What is S_N^{-1} mechanism ? Give the characteristics of S_N^{-1} mechanism in complexes.

P.T.O.

- (b) Determine term symbol for s^1p^1 and d^1s^1 .
- (c) State and explain selection rules for electronic spectrum of transition metal complexes.
- 'Transfer of electron from $[Cr(H_2O)_6]^{2+}$ to $[Co(NH_3)_6]^{3+}$ in aqueous medium is slower than the transfer from $[Cr(H_2O)_6]^{2+}$ to $[Co(NH_3)_5OH]^{2+}$.
- (e) Distinguish between inert and labile complexes.
- 3. (a) What are metal nitrosyl compounds? Explain different methods of bonding of NO in metal nitrosyl with appropriate examples. 8

Or

Or

Explain structure and bonding in ferrocene.

(b) What is charge transfer spectra? Explain its types.

CX St.

7

Calculate magnetic moment of the following complex ions:

- (i) $[Ti(H_2O)_6]^{3+}$
- (ii) [Ni(CN)₄]²⁻
- 4. (a) Explain mechanism of acid hydrolysis when inert ligand is π -acceptor.

Or

Distinguish between inner sphere and outer sphere electron transfer reactions in complexes.

- (b) Explain the use of IR absorption spectra of metallic carbonyls for:
 - (i) To determine geometry of metallic carbonyls.
 - (ii) To determine the bond order of ligated Co.

Or

Draw and explain Tanabe-Sugano diagram for d^2 configuration.

- 5. (A) Select the correct alternative from the following:
 - (i) Ground state term for d^2 configuration is:
 - (a) 3 F
 - (b) ³P
 - (c) ${}^{1}G$
 - (d) ¹S
 - (ii) The Mulliken symbol for the spectroscopic term D in octahedral field is:
 - (a) $T_{2g} + E_g$
 - (b) $T_2 + E$
 - (c) A_{1g}
 - (d) T_{1g}
 - (iii) The CO stretching frequencies generally follows the order
 - (a) $MCO > M_2CO > M_3CO$
 - (b) MCO < M₂CO < M₃CO
 - (c) $MCO = M_2CO < M_3CO$
 - (d) MCO > M_2 CO = M_3 CO
 - (iv) π -donor ligand is
 - (a) NH₃
 - (*b*) CO
 - (c) H_2O
 - (d) CNR

P.T.O.

WT (4) AI—11—2017

- (v) Number of π -electrons in ferrocene are
 - (a) 5
 - (*b*) 6
 - (c) 10
 - (d) 12
- (B) Write short notes on any two:

10

- (i) Taube explanation of lability and inertness
- (ii) 18 electron rule
- (iii) Two-electron transfer reactions.

AI-11-2017

4