This question paper contains 4 printed pages]

AG-150-2018

FACULTY OF SCIENCE

M.Sc. (First Year) (First Semester) EXAMINATION

NOVEMBER/DECEMBER, 2018

(CBCS Pattern)

CHEMISTRY

Paper III (CH-413)

(Physical Chemistry—I)

(Friday, 30-11-2018)

Time: 10.00 a.m. to 1.00 p.m.

Time—3 Hours

Maximum Marks—75

- N.B. := (i) Attempt All questions.
 - (ii) Use of log table and calculator is allowed.
 - (iii) Solve Q. No. 5(A), MCQ in one attempt only.

Given: (1) $h = 6.626 \times 10^{-34} \text{ Js}$

- (2) Mass of an $e^- = M_e = 9.109 \times 10^{-31} \text{ kg}$
- (3) $C = 3 \times 10^{10} \text{ cm/s}$
- (4) $N = 6.023 \times 10^{23}$ molecules
- (5) $K = 1.38 \times 10^{-16} \text{ erg/deg./mole}$
- (6) R = 82.06 c.c. atm./deg./mole.
- 1. Solve any three:

15

- (a) What are operators in quantum mechanics? State Laplacian and Hamiltonian operators in one-dimensional and three-dimensional problems.
- (b) Explain tricomponent system, water-acetone-chloroform.

P.T.O.

- (c) Calculate the ionic strength of a solution prepared by mixing:
 - (i) 0.1 M KNO₃, 0.2 M K_2SO_4 and 0.05 M $Cu(NO_3)_2$ and
 - (ii) 0.01 M NaCl and 0.001 M Na₂SO₄.
- (d) Explain N&P-type semiconductors. What is the effect of temperature on them?
- (e) What is Zeta-potential? Explain Helmholtz-Perrin theory of electrical double layer.
- 2. Solve any *three* (out of five):

15

- (a) Prove that : $\left[\hat{L}^2, L_{\hat{y}}\right] = 0$.
- (b) Describe the Eutectic systems containing two solid and a liquid components with phase diagram.
- (c) Define partition function and derive an expression for rotational partition function.
- (d) Write a short note on Isomorphism in crystals.
- (e) Derive the Lipmann equation of surface excess phenomenon.
- 3. Solve the following:
 - (a) Explain:

8

- (i) Spin-orbit coupling
- (ii) Zeeman effect.

Or

Write an account on perturbation theory, first order and non-degenerate.

(b) What is normalisation of wave functions? Show that 1s-wave function of H-atom given by:

$$\Psi_{1s} = \Psi_{100} = \frac{1}{\sqrt{\pi}} a_0^{3/2} (\exp.)^{-r/a_0}$$

where a_0 is Bohr's radius is normalised.

(Given,
$$d\tau = r^2 dr \sin \theta d\theta d\phi$$
)

7

Or

Explain in case of H-atom, the radius of maximum probability to locate e^- is 0.529 Å. What is the wavelength of light absorbed when an e^- in a linear molecule 10 Å long make a transition from ground to first excited state.

- 4. Solve the following:
 - (a) Explain clearly the term fugacity. How is it determined for Real gases?

Or

Explain Debye-Hückel limiting law. An aqueous solution at 25°C is 0.005 m in NaCl and 0.008 m in $\rm K_2SO_4$. Calculate the activities of Na⁺ and $\rm SO_{4-}^{--}$ -ions.

(b) What are activity and activity coefficient? Describe a solubility method for determination of activity coefficients of electrolytic solutions. 8

Or

Calculate the translational partition function for one mole of nitrogen at 2 atmospheres and 27°C, assuming the gas behaves ideal.

5. (A) Select the *correct* alternatives:

(a)

The phi-equation for hydrogen and hydrogen like systems is:

$$(i) \qquad \frac{\partial^2 \phi}{\partial \phi^2} + m^2 \phi = 0$$

$$(ii) \qquad \frac{\partial^2 \phi}{\partial \phi^2} - m^2 \phi = 0$$

- $(iii) \quad \psi = R \Theta \phi$
- (iv) Both (i) and (ii)

P.T.O.

5

WT		(4) AG—150—2018
	(b)	In a ternary system containing one-pair of partially miscible liquids, the system along the binodal curve is:
		(i) Invariant
		(ii) Monovariant
		(iii) Bivariant
		(iv) None of the above
	(c)	In canonical ensemble, the constants are:
		(i) E, V, N
		(ii) T, V, N
		(iii) Τ, V, μ
		(iv) None of the above
	(d)	In Cubical Close Packing (CCP), the structure has
		fold axis of symmetry which is passing through diagonals of the
		cube:
	100	
	O'AND	
.87		(iii) 3
100		(iv) Both 6 and 3
A PAR	(e)	According to Debye-Hückel theory of strong electrolytes:
10 10 10 10 10 10 10 10 10 10 10 10 10 1	B 800	(i) $\wedge_{\vee} > \wedge_{\infty}$
	P P P P	(ii) $\wedge_{\vee} < \wedge_{\infty}$
		(iii) $\wedge_{\vee} = \wedge_{\infty}$
		$(iii) \land_{\vee} = \land_{\infty}$ $(iv) \land_{\vee} \neq \land_{\infty}$
(B)	Write	short notes on any two:
	(a)	Ternary systems with three partially miscible pairs
	(<i>b</i>)	Wien effect
	(c)	Degeneracy of energy states.
\$ 1000 12 8 \$ 1000 12 8 2		
AG—150—	-2018	4