This question paper contains 4 printed pages]

L-11-2019

FACULTY OF SCIENCE

M.Sc. (First Year) (First Semester) EXAMINATION

MARCH/APRIL, 2019

(CBCS Pattern)

CHEMISTRY

Paper I (CH-411)

(Inorganic Chemistry)

(Monday, 22-4-2019)

Time: 10.00 a.m. to 1.00 p.m.

Time—Three Hours

Maximum Marks—75

- N.B. := (i) Attempt All questions.
 - (ii) Log table and calculator is allowed.
 - (iii) Solve MCQ once only.
- 1. Solve any three out of five:

15

- (a) Explain the inner sphere mechanism of electron transfer reactions with a suitable example.
- (b) Explain lability and inertness of complexes on the basis of V.B.T.
- (c) What is 18-electron rule ? Show that $Ni(CO)_4$ obeys 18-electron rule.
- (d) Give the characteristics of carbon monoxide as ligand.
- (e) Calculate the number of microstates for p^6 and d^{10} configuration.
- 2. Solve any three out of five:

15

- (a) Give the preparation and properties of ferrocene.
- (b) Draw the structures of the following metal clusters:
 - (i) $Mn_2(CO)_{10}$
 - (ii) $\operatorname{Fe}_2(\operatorname{CO})_9$.

P.T.O.

- (c) Determine the ground state term symbol for (n-1)d orbital of Fe²⁺.
- (d) What is S_N^2 mechanism? Give the characteristics of S_N^2 mechanism in complexes.
- (e) Draw Tanabe-Sugano diagram for d^3 configuration.
- 3. Solve the following:
 - (a) Explain metal-metal bonding in metal cluster with suitable examples.

Or

Explain oxidative addition and reductive elimination with suitable examples.

(b) Draw and explain correlation diagram of d^1 and d^9 octahedral field.

Or

Calculate the magnetic moment of d^5 configuration in strong and weak octahedral ligand field.

- 4. Solve the following:
 - (a) Distinguish between inner sphere and outer sphere electron transfer reaction in complexes.

Or

How will you prepare metal clusters by:

- (i) Thermal expulsion of co from metal carbonyls.
- (ii) Condensation method.
- (b) Explain the charge transfer transitions in detail.

Or

7

Explain the structure and bonding in ferrocence.

WT				(3)	L—11—2019			
	(A)	Select correct alternative from the following:						
		(i)	Num	Number of microstates for p^4 configuration is				
			(a)	10				
			(<i>b</i>)	20				
			(c)	18				
			(d)	15				
		(ii)	Mull	iken spectroscopic term symbol for p in	octahedral field			
			is					
			(a)	A_{1g}	2000 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
			(b)					
			(c)	T_{2g}	e.			
			(d)					
		(iii)	Ni(C	$\left(0\right)_{4}$ is prepared by				
	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		(a)	Mond process				
			(b)	Vilsmeir reaction				
			(c)	Insertion reaction				
			(d)	All of the above				
		(iv)	Com	plexes which do not allow excha	ange of ligand			
			calle	d				
			(a)	Labile complexes				
			(b)	Inert complexes				
			(c)	Both (a) and (b)				
			(d)	None of the above				
		CO COL	E STA		P.T.O.			

WT (4) <u>\$</u>	45	6	1 × C	-201	9

- (v) Rate of electron transfer through outer sphere mechanism is increased if
 - (a) Coordinated ligand is π -acceptor
 - (b) Electrons are present T_{2g} orbitals
 - (c) Coordinated ligand is π -donor
 - (d) None of the above
- (B) Write short notes on any two:

10

- (a) Anation reaction
- (b) Spin cross over
- (c) 16-electron rule.

L-11-2019

4